The IPB has once again been recognized for its exemplary actions in terms of equal opportunity-oriented personnel and organizational policies and has received the TOTAL E-QUALITY certification for the…
The Plant Science Student Conference (PSSC) has been organised by students from the two Leibniz institutes, IPK and IPB, every year for the last 20 years. In this interview, Christina Wäsch (IPK) and…
For high-throughput screening of genetically modified plant cells, a system for the automatic analysis of huge collections of microscope images is needed to decide whether the cells are infected with fungi or not. To study the potential of feature based classification for this application, we compare different classifiers (kNN, SVM, MLP, LVQ) combined with several feature reduction techniques (PCA, LDA, Mutual Information, Fisher Discriminant Ratio, Recursive Feature Elimination). We achieve a significantly higher classification accuracy using a reduced feature vector instead of the full length feature vector.