The IPB has once again been recognized for its exemplary actions in terms of equal opportunity-oriented personnel and organizational policies and has received the TOTAL E-QUALITY certification for the…
The Plant Science Student Conference (PSSC) has been organised by students from the two Leibniz institutes, IPK and IPB, every year for the last 20 years. In this interview, Christina Wäsch (IPK) and…
The allene oxide cyclase (AOC) is a plastid-located enzyme in the biosynthesis of the signaling compound jasmonic acid (JA). In tomato, AOC occurs specifically in ovules and vascular bundles [Hause et al. (2000)PlantJ. 24; 113]. Immunocytological analysis of longitudinal sections of petioles and flower stalks revealed the occurrence of AOC in companion cells (CC) and sieve elements (SE). Electron microscopic analysis led to the conclusion that the AOC-containing structures of SE are plastids. AOC was not detected in SE of 35S::AOCantisense plants. The enzymes preceding AOC in JA biosynthesis, the allene oxide synthase (AOS) and the lipoxygenase, were also detected in SE. In situ hybridization showed that the SE are free of AOC-mRNA suggesting AOC protein traffic from CC to SE via plasmodesmata. A control by in situ hybridization of AOS mRNA coding for a protein with a size above the exclusion limit of plasmodesmata indicated mRNA in CC and SE. The data suggest that SE carry the capacity to form 12-oxo-phytodienoic acid, the unique precursor of JA. Together with preferential generation of JA in vascular bundles [Stenzel et al. (2003)Plant J. 33: 577], the data support a role of JA in systemic wound signaling.
Publications
Doll, J.; Hause, B.; Demchenko, K.; Pawlowski, K.; Krajinski, F.;A Member of the Germin-Like Protein Family is a Highly Conserved Mycorrhiza-Specific Induced GenePlant Cell Physiol.441208-1214(2003)DOI: 10.1093/pcp/pcg153
A Medicago truncatula cDNA encoding a germin-like protein (GLP) was isolated from a suppression subtractive hybridization cDNA library enriched for arbuscular mycorrhiza (AM)-induced genes. The MtGLP1 amino acid sequence shows some striking differences to previously described plant GLP sequences and might therefore represent a new subgroup of this multigene family. The MtGlp1 mRNA was strongly induced in roots and root cultures colonized by the AM fungus Glomus intraradices. Whereas MtGlp1 is strongly induced in AM, no transcripts of the gene were detected in non-infected roots or in roots after infection with the oomycete root pathogen Aphanomyces euteiches or with Rhizobia. Increased phosphate levels during fertilization also could not stimulate MtGlp1 transcription. Hence, MtGlp1 induction seems to be an AM-specific phenomenon. In situ hybridization showed that MtGlp1 is localized in arbuscule containing cells. A putative orthologue of this AM-specific GLP gene could be localized in a second legume Lotus japonicus, indicating that the regulation of a member of the GLP family belongs to a conserved mechanism in AM regulation in different plant species.