The IPB has once again been recognized for its exemplary actions in terms of equal opportunity-oriented personnel and organizational policies and has received the TOTAL E-QUALITY certification for the…
The Plant Science Student Conference (PSSC) has been organised by students from the two Leibniz institutes, IPK and IPB, every year for the last 20 years. In this interview, Christina Wäsch (IPK) and…
Rausch, F.; Schicht, M.; Bräuer, L.; Paulsen, F.; Brandt, W.;Protein modeling and molecular dynamics simulation of the two novel surfactant proteins SP-G and SP-HJ. Mol. Model.202513(2014)DOI: 10.1007/s00894-014-2513-0
Surfactant proteins are well known from the human lung where they are responsible for the stability and flexibility of the pulmonary surfactant system. They are able to influence the surface tension of the gas–liquid interface specifically by directly interacting with single lipids. This work describes the generation of reliable protein structure models to support the experimental characterization of two novel putative surfactant proteins called SP-G and SP-H. The obtained protein models were complemented by predicted posttranslational modifications and placed in a lipid model system mimicking the pulmonary surface. Molecular dynamics simulations of these protein-lipid systems showed the stability of the protein models and the formation of interactions between protein surface and lipid head groups on an atomic scale. Thereby, interaction interface and strength seem to be dependent on orientation and posttranslational modification of the protein. The here presented modeling was fundamental for experimental localization studies and the simulations showed that SP-G and SP-H are theoretically able to interact with lipid systems and thus are members of the surfactant protein family.
Publications
Bräuer, L.; Brandt, W.; Wessjohann, L. A.;Modeling the E. coli 4-hydroxybenzoic acid oligoprenyltransferase (ubiA transferase) and characterization of potential active sitesJ. Mol. Model.10317-327(2004)DOI: 10.1007/s00894-004-0197-6
4-Hydroxybenzoate oligoprenyltransferase of E. coli, encoded in the gene ubiA, is an important key enzyme in the biosynthetic pathway to ubiquinone. It catalyzes the prenylation of 4-hydroxybenzoic acid in position 3 using an oligoprenyl diphosphate as a second substrate. Up to now, no X-ray structure of this oligoprenyltransferase or any structurally related enzyme is known. Knowledge of the tertiary structure and possible active sites is, however, essential for understanding the catalysis mechanism and the substrate specificity.With homology modeling techniques, secondary structure prediction tools, molecular dynamics simulations, and energy optimizations, a model with two putative active sites could be created and refined. One active site selected to be the most likely one for the docking of oligoprenyl diphosphate and 4-hydroxybenzoic acid is located near the N-terminus of the enzyme. It is widely accepted that residues forming an active site are usually evolutionary conserved within a family of enzymes. Multiple alignments of a multitude of related proteins clearly showed 100% conservation of the amino acid residues that form the first putative active site and therefore strongly support this hypothesis. However, an additional highly conserved region in the amino acid sequence of the ubiA enzyme could be detected, which also can be considered a putative (or rudimentary) active site. This site is characterized by a high sequence similarity to the aforementioned site and may give some hints regarding the evolutionary origin of the ubiA enzyme.Semiempirical quantum mechanical PM3 calculations have been performed to investigate the thermodynamics and kinetics of the catalysis mechanism. These results suggest a near SN1 mechanism for the cleavage of the diphosphate ion from the isoprenyl unit. The 4-hydroxybenzoic acid interestingly appears not to be activated as benzoate anion but rather as phenolate anion to allow attack of the isoprenyl cation to the phenolate, which appeared to be the rate limiting step of the whole process according to our quantum chemical calculations. Our models are a basis for developing inhibitors of this enzyme, which is crucial for bacterial aerobic metabolism.