The IPB has once again been recognized for its exemplary actions in terms of equal opportunity-oriented personnel and organizational policies and has received the TOTAL E-QUALITY certification for the…
The Plant Science Student Conference (PSSC) has been organised by students from the two Leibniz institutes, IPK and IPB, every year for the last 20 years. In this interview, Christina Wäsch (IPK) and…
Wittmann, I.; Schierling, A.; Dettner, K.; Göhl, M.; Schmidt, J.; Seifert, K.;Detection of a New Piperideine Alkaloid in the Pygidial Glands of Some Stenus BeetlesChem. Biodivers.121422-1434(2015)DOI: 10.1002/cbdv.201400391
Rove beetles of the genus Stenus produce and store bioactive alkaloids like stenusine (3), 3‐(2‐methylbut‐1‐enyl)pyridine (4), and cicindeloine (5) in their pygidial glands to protect themselves from predation and microorganismic infestation.The biosynthesis of stenusine (3), 3‐(2‐methylbut‐1‐enyl)pyridine (4), and cicindeloine (5) was previously investigated in Stenus bimaculatus, Stenus similis, and Stenus solutus, respectively. The piperideine alkaloid cicindeloine (5) occurs also as a major compound in the pygidial gland secretion of Stenus cicindeloides. The three metabolites follow the same biosynthetic pathway, where the N‐heterocyclic ring is derived from L‐lysine and the side chain from L‐isoleucine. The different alkaloids are finally obtained by few modifications of shared precursor molecules, such as 2,3,4,5‐tetrahydro‐5‐(2‐methylbutylidene)pyridine (1). This piperideine alkaloid was synthesized and detected by GC/MS and GC at a chiral phase in the pygidial glands of Stenus similis, Stenus tarsalis, and Stenus cicindeloides.
Two new N ‐glucosylated indole alkaloids were isolated from fruiting bodies of the basidiomycete Cortinarius brunneus (Pers .) Fr . The structures were elucidated by means of the spectroscopic data. Additionally, the very recently reported compounds N‐ 1‐β‐ glucopyranosyl‐3‐(carboxymethyl)‐1H ‐indole (3 ) and N‐ 1‐β‐ glucopyranosyl‐3‐(2‐methoxy‐2‐oxoethyl)‐1H ‐indole (4 ) could be detected. Compound 3 is the N ‐glucoside of the plant‐growth regulator 1H ‐indole‐3‐acetic acid (IAA), but, in contrast, it does not exhibit auxin‐like activity in an Arabidopsis thaliana tap root elongation assay.