The IPB has once again been recognized for its exemplary actions in terms of equal opportunity-oriented personnel and organizational policies and has received the TOTAL E-QUALITY certification for the…
The Plant Science Student Conference (PSSC) has been organised by students from the two Leibniz institutes, IPK and IPB, every year for the last 20 years. In this interview, Christina Wäsch (IPK) and…
STOP1, an Arabidopsis transcription factor favouring root growth
tolerance against Al toxicity, acts in the response to iron under low Pi
(-Pi). Previous studies have shown that Al and Fe regulate the
stability and accumulation of STOP1 in roots, and that the STOP1 protein
is sumoylated by an unknown E3 ligase. Here, using a forward genetics
suppressor screen, we identified the E3 SUMO (small ubiquitin-like
modifier) ligase SIZ1 as a modulator of STOP1 signalling. Mutations in
SIZ1 increase the expression of ALMT1 (a direct target of STOP1) and
root growth responses to Al and Fe stress in a STOP1-dependent manner.
Moreover, loss-of-function mutations in SIZ1 enhance the abundance of
STOP1 in the root tip. However, no sumoylated STOP1 protein was detected
by western blot analysis in our sumoylation assay in E. coli,
suggesting the presence of a more sophisticated mechanism. We conclude
that the sumo ligase SIZ1 negatively regulates STOP1 signalling, at
least in part by modulating STOP1 protein in the root tip. Our results
will allow a better understanding of this signalling pathway.