Publications - Molecular Signal Processing
- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Books and chapters
Publications
Publications
This page was last modified on 27 Jan 2025 .
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Publications - Molecular Signal Processing
Publications
Indole-3-acetic acid (IAA or auxin) is essential throughout the life cycle of a plant. It controls diverse cellular processes, including gene expression. The hormone is perceived by a ubiquitin protein ligase (E3) and triggers the rapid destruction of repressors, called Aux/IAA proteins. The first structural model of a plant hormone receptor illustrates how auxin promotes Aux/IAA substrate recruitment by extending the hydrophobic protein-interaction surface. This work establishes a novel mechanism of E3 regulation by small molecules and promises a novel strategy for the treatment of human disorders associated with defective ubiquitin-dependent proteolysis.
Books and chapters
0
Publications
When inorganic phosphate is limiting, Arabidopsis has the facultative ability to metabolize exogenous nucleic acid substrates, which we utilized previously to identify insensitive phosphate starvation response mutants in a conditional genetic screen. In this study, we examined the effect of the phosphate analog, phosphite (Phi), on molecular and morphological responses to phosphate starvation. Phi significantly inhibited plant growth on phosphate-sufficient (2 mm) and nucleic acid-containing (2 mmphosphorus) media at concentrations higher than 2.5 mm. However, with respect to suppressing typical responses to phosphate limitation, Phi effects were very similar to those of phosphate. Phosphate starvation responses, which we examined and found to be almost identically affected by both anions, included changes in: (a) the root-to-shoot ratio; (b) root hair formation; (c) anthocyanin accumulation; (d) the activities of phosphate starvation-inducible nucleolytic enzymes, including ribonuclease, phosphodiesterase, and acid phosphatase; and (e) steady-state mRNA levels of phosphate starvation-inducible genes. It is important that induction of primary auxin response genes by indole-3-acetic acid in the presence of growth-inhibitory Phi concentrations suggests that Phi selectively inhibits phosphate starvation responses. Thus, the use of Phi may allow further dissection of phosphate signaling by genetic selection for constitutive phosphate starvation response mutants on media containing organophosphates as the only source of phosphorus.
Publications
Inheritance of three major genes involved in synthesis of aliphatic glucosinolates (GSL) was followed in segregating populations of Brassica oleracea L. generated from three crosses: broccoli × cauliflower, collard × broccoli, and collard × cauliflower. Two of these genes, GSL-PRO and GSL-ELONG, regulate sidechain length. The action of the former results in three-carbon GSL, whereas action of the latter produces four-carbon GSL. We determined that these two genes act and segregate independently from each other in B. oleracea. The double recessive genotype produces only trace amounts of aliphatic GSL. The third gene, GSL-ALK controls sidechain desaturation and, as it has been observed in Arabidopsis thaliana (L.) Heynh., we found that this gene cosegregates with a fourth gene, GSL-OH, that is responsible for sidechain hydroxylation. Elucidation of the inheritance of major genes controlling biosynthesis of GSL will allow for manipulation of these genes and facilitate development of lines with specific GSL profiles. This capability will be important for improvement of Brassica breeding lines with high content of desirable GSL, like glucoraphanin, a demonstrated precursor of anticarcinogenic compounds. Additionally, this work is the first step towards cloning the major genes of the aliphatic GSL pathway, and to use these clones in transformation strategies for further crop enhancement.
This page was last modified on 27 Jan 2025 .