Publications - Molecular Signal Processing
- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
This page was last modified on 27 Jan 2025 .
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Publications - Molecular Signal Processing
Publications
We conducted a study to evaluate dietary chemopreventive strategies to reduce genotoxic effects of the carcinogens 2-amino-1-methyl-6-phenyl-imidazo[4,5-b]pyridine (PhIP) and 2-amino-3-methylimidazo[4,5-f]quinoline (IQ). PhIP and IQ are heterocyclic amines (HCAs) that are found in cooked meat and may be risk factors for cancer. Typical chemoprevention studies have used carcinogen doses many thousand-fold higher than usual human daily intake. Therefore, we administered a low dose of [14C] PhIPand [3H] IQand utilized accelerator mass spectrometry to quantify PhIP adducts in the liver, colon, prostate, and blood plasma and IQadducts in the liver and blood plasma with high sensitivity. Diets supplemented with phenethylisothiocyanate (PEITC), genistein, chlorophyllin, or lycopene were evaluated for their ability to decrease adduct formation of [14C] PhIPand [3H] IQin rats. We also examined the effect of treatments on the activity of the phase II detoxification enzymes glutathione S-transferase (GST), UDP-glucuronyltransferase (UGT), phenol sulfotransferase (SULT) and quinone reductase (QR). PEITC and chlorophyllin significantly decreased PhIP-DNA adduct levels in all tissues examined, which was reflected by similar changes in PhIP binding to albumin in the blood. In contrast, genistein and lycopene tended to increase PhIP adduct levels. The treatments did not significantly alter the level of IQ-DNA or -protein adducts in the liver.With the exception of lycopene, the treatments had some effect on the activity of one or more hepatic phase II detoxification enzymes. We conclude that PEITC and chlorophyllin are protective of PhIP-induced genotoxicity after a low exposure dose of carcinogen, possibly through modification of HCA metabolism.
Publications
The plant growth hormone auxin typified by indoleacetic acid (IAA) transcriptionally activates early genes in pea, PS‐IAA4/5 and PS‐IAA6 , that are members of a multigene family encoding short‐lived nuclear proteins. To gain first insight into the biological role of PS‐IAA4/5 and PSIAA6 , promoter‐β‐glucuronidase (GUS) gene fusions were constructed and their expression during early development of transgenic tobacco seedlings was examined. The comparative analysis reveals spatial and temporal expression patterns of both genes that correlate with cells, tissues, and developmental processes known to be affected by auxin. GUS activity in seedlings of both transgenic lines is located in the root meristem, sites of lateral root initiation and in hypocotyls undergoing rapid elongation. In addition, mutually exclusive cell‐specific expression is evident. For instance, PS‐IAA4/5—GUS but not PS‐IAA6—GUS is expressed in root vascular tissue and in guard cells, whereas only PS‐IAA6—GUS activity is detectable in glandular trichomes and redistributes to the elongating side of the hypocotyl upon gravitropic stimulation. Expression of PS‐IAA4/5 and PS‐IAA6 in elongating, dividing, and differentiating cell types indicates multiple functions during development. The common and yet distinct activity patterns of both genes suggest a combinatorial code of spatio‐temporal co‐expression of the various PS‐IAA4/ 5‐like gene family members in plant development that may mediate cell‐specific responses to auxin.
Publications
0
Publications
Genes induced by the plant hormone auxin are probably involved in the execution of vital cellular functions and developmental processes. Experimental approaches designed to elucidate the molecular mechanisms of auxin action have focused on auxin perception, genetic dissection of the signaling apparatus and specific gene activation. Auxin‐responsive promoter elements of early genes provide molecular tools for probing auxin signaling in reverse. Functional analysis of several auxin‐specific promoters of unrelated early genes suggests combinatorial utilization of both conserved and variable elements. These elements are arranged into autonomous domains and the combination of such modules generates uniquely composed promoters. Modular promoters allow for auxin‐mediated transcriptional responses to be revealed in a tissue‐ and development‐specific manner.
This page was last modified on 27 Jan 2025 .