Publications - Molecular Signal Processing
- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
Publications
Publications
This page was last modified on 27 Jan 2025 .
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Publications - Molecular Signal Processing
Publications
Glucosinolates and their associated degradation products have long been recognized for their distinctive benefits to human nutrition and plant defense. Because most of the structural genes of glucosinolate metabolism have been identified and functionally characterized in Arabidopsis thaliana, current research increasingly focuses on questions related to the regulation of glucosinolate synthesis, distribution and degradation as well as to the feasibility of engineering customized glucosinolate profiles. Here, we highlight recent progress in glucosinolate research, with particular emphasis on the biosynthetic pathway and its metabolic relationships to auxin homeostasis. We further discuss emerging insight into the signaling networks and regulatory proteins that control glucosinolate accumulation during plant development and in response to environmental challenge.
Publications
Coffea arabica is susceptible to several pests and diseases, some of which affect the leaves and roots. Systemic acquired resistance (SAR) is the main defence mechanism activated in plants in response to pathogen attack. Here, we report the effects of benzo(1,2,3)thiadiazole-7-carbothioic acid-s-methyl ester (BTH), a SAR chemical inducer, on the expression profile of C. arabica. Two cDNA libraries were constructed from the mRNA isolated from leaves and embryonic roots to create 1587 nonredundant expressed sequence tags (ESTs). We developed a cDNA microarray containing 1506 ESTs from the leaves and embryonic roots, and 48 NBS-LRR (nucleotide-binding site leucine-rich repeat) gene fragments derived from 2 specific genomic libraries. Competitive hybridization between untreated and BTH-treated leaves resulted in 55 genes that were significantly overexpressed and 16 genes that were significantly underexpressed. In the roots, 37 and 42 genes were over and underexpressed, respectively. A general shift in metabolism from housekeeping to defence occurred in the leaves and roots after BTH treatment. We observed a systemic increase in pathogenesis-related protein synthesis, in the oxidative burst, and in the cell wall strengthening processes. Moreover, responses in the roots and leaves varied significantly.
Publications
Glucosinolates and their associated degradation products have long been recognized for their distinctive benefits to human nutrition and plant defense. Because most of the structural genes of glucosinolate metabolism have been identified and functionally characterized in Arabidopsis thaliana, current research increasingly focuses on questions related to the regulation of glucosinolate synthesis, distribution and degradation as well as to the feasibility of engineering customized glucosinolate profiles. Here, we highlight recent progress in glucosinolate research, with particular emphasis on the biosynthetic pathway and its metabolic relationships to auxin homeostasis. We further discuss emerging insight into the signaling networks and regulatory proteins that control glucosinolate accumulation during plant development and in response to environmental challenge.
Publications
Coffea arabica is susceptible to several pests and diseases, some of which affect the leaves and roots. Systemic acquired resistance (SAR) is the main defence mechanism activated in plants in response to pathogen attack. Here, we report the effects of benzo(1,2,3)thiadiazole-7-carbothioic acid-s-methyl ester (BTH), a SAR chemical inducer, on the expression profile of C. arabica. Two cDNA libraries were constructed from the mRNA isolated from leaves and embryonic roots to create 1587 nonredundant expressed sequence tags (ESTs). We developed a cDNA microarray containing 1506 ESTs from the leaves and embryonic roots, and 48 NBS-LRR (nucleotide-binding site leucine-rich repeat) gene fragments derived from 2 specific genomic libraries. Competitive hybridization between untreated and BTH-treated leaves resulted in 55 genes that were significantly overexpressed and 16 genes that were significantly underexpressed. In the roots, 37 and 42 genes were over and underexpressed, respectively. A general shift in metabolism from housekeeping to defence occurred in the leaves and roots after BTH treatment. We observed a systemic increase in pathogenesis-related protein synthesis, in the oxidative burst, and in the cell wall strengthening processes. Moreover, responses in the roots and leaves varied significantly.
Publications
We conducted a study to evaluate dietary chemopreventive strategies to reduce genotoxic effects of the carcinogens 2-amino-1-methyl-6-phenyl-imidazo[4,5-b]pyridine (PhIP) and 2-amino-3-methylimidazo[4,5-f]quinoline (IQ). PhIP and IQ are heterocyclic amines (HCAs) that are found in cooked meat and may be risk factors for cancer. Typical chemoprevention studies have used carcinogen doses many thousand-fold higher than usual human daily intake. Therefore, we administered a low dose of [14C] PhIPand [3H] IQand utilized accelerator mass spectrometry to quantify PhIP adducts in the liver, colon, prostate, and blood plasma and IQadducts in the liver and blood plasma with high sensitivity. Diets supplemented with phenethylisothiocyanate (PEITC), genistein, chlorophyllin, or lycopene were evaluated for their ability to decrease adduct formation of [14C] PhIPand [3H] IQin rats. We also examined the effect of treatments on the activity of the phase II detoxification enzymes glutathione S-transferase (GST), UDP-glucuronyltransferase (UGT), phenol sulfotransferase (SULT) and quinone reductase (QR). PEITC and chlorophyllin significantly decreased PhIP-DNA adduct levels in all tissues examined, which was reflected by similar changes in PhIP binding to albumin in the blood. In contrast, genistein and lycopene tended to increase PhIP adduct levels. The treatments did not significantly alter the level of IQ-DNA or -protein adducts in the liver.With the exception of lycopene, the treatments had some effect on the activity of one or more hepatic phase II detoxification enzymes. We conclude that PEITC and chlorophyllin are protective of PhIP-induced genotoxicity after a low exposure dose of carcinogen, possibly through modification of HCA metabolism.
Publications
We conducted a study to evaluate dietary chemopreventive strategies to reduce genotoxic effects of the carcinogens 2-amino-1-methyl-6-phenyl-imidazo[4,5-b]pyridine (PhIP) and 2-amino-3-methylimidazo[4,5-f]quinoline (IQ). PhIP and IQ are heterocyclic amines (HCAs) that are found in cooked meat and may be risk factors for cancer. Typical chemoprevention studies have used carcinogen doses many thousand-fold higher than usual human daily intake. Therefore, we administered a low dose of [14C] PhIPand [3H] IQand utilized accelerator mass spectrometry to quantify PhIP adducts in the liver, colon, prostate, and blood plasma and IQadducts in the liver and blood plasma with high sensitivity. Diets supplemented with phenethylisothiocyanate (PEITC), genistein, chlorophyllin, or lycopene were evaluated for their ability to decrease adduct formation of [14C] PhIPand [3H] IQin rats. We also examined the effect of treatments on the activity of the phase II detoxification enzymes glutathione S-transferase (GST), UDP-glucuronyltransferase (UGT), phenol sulfotransferase (SULT) and quinone reductase (QR). PEITC and chlorophyllin significantly decreased PhIP-DNA adduct levels in all tissues examined, which was reflected by similar changes in PhIP binding to albumin in the blood. In contrast, genistein and lycopene tended to increase PhIP adduct levels. The treatments did not significantly alter the level of IQ-DNA or -protein adducts in the liver.With the exception of lycopene, the treatments had some effect on the activity of one or more hepatic phase II detoxification enzymes. We conclude that PEITC and chlorophyllin are protective of PhIP-induced genotoxicity after a low exposure dose of carcinogen, possibly through modification of HCA metabolism.
This page was last modified on 27 Jan 2025 .