jump to searchjump to navigationjump to content

Publications - Molecular Signal Processing

Sort by: sort ascending Year Type of publication

Displaying results 1 to 10 of 13.

Publications

Flores, R.; Delgado, S.; Gas, M.-E.; Carbonell, A.; Molina, D.; Gago, S.; De la Peña, M.; Viroids: the minimal non-coding RNAs with autonomous replication FEBS Lett. 567, 42-48, (2004) DOI: 10.1016/j.febslet.2004.03.118

Viroids are small (246–401 nucleotides), non‐coding, circular RNAs able to replicate autonomously in certain plants. Viroids are classified into the families Pospiviroidae and Avsunviroidae , whose members replicate in the nucleus and chloroplast, respectively. Replication occurs by an RNA‐based rolling‐circle mechanism in three steps: (1) synthesis of longer‐than‐unit strands catalyzed by host DNA‐dependent RNA polymerases forced to transcribe RNA templates, (2) processing to unit‐length, which in family Avsunviroidae is mediated by hammerhead ribozymes, and (3) circularization either through an RNA ligase or autocatalytically. Disease induction might result from the accumulation of viroid‐specific small interfering RNAs that, via RNA silencing, could interfere with normal developmental pathways.
Publications

Carbonell, A.; De la Peña, M.; Flores, R.; Gago, S.; Effects of the trinucleotide preceding the self-cleavage site on eggplant latent viroid hammerheads: differences in co- and post-transcriptional self-cleavage may explain the lack of trinucleotide AUC in most natural hammerheads Nucleic Acids Res. 34, 5613-5622, (2006) DOI: 10.1093/nar/gkl717

Eggplant latent viroid (ELVd) can form stable hammerhead structures in its (+) and (−) strands. These ribozymes have the longest helices I reported in natural hammerheads, with that of the ELVd (+) hammerhead being particularly stable (5/7 bp are G-C). Moreover, the trinucleotide preceding the self-cleavage site of this hammerhead is AUA, which together with GUA also found in some natural hammerheads, deviate from the GUC present in most natural hammerheads including the ELVd (−) hammerhead. When the AUA trinucleotide preceding the self-cleavage site of the ELVd (+) hammerhead was substituted by GUA and GUC, as well as by AUC (essentially absent in natural hammerheads), the values of the self-cleavage rate constants at low magnesium of the purified hammerheads were: ELVd-(+)-AUC≈ELVd-(+)-GUC>ELVd-(+)-GUA> ELVd-(+)-AUA. However, the ELVd-(+)-AUC hammerhead was the catalytically less efficient during in vitro transcription, most likely because of the transient adoption of catalytically-inactive metastable structures. These results suggest that natural hammerheads have been evolutionary selected to function co-transcriptionally, and provide a model explaining the lack of trinucleotide AUC preceding the self-cleavage site of most natural hammerheads. Comparisons with other natural hammerheads showed that the ELVd-(+)-GUC and ELVd-(+)-AUC hammerheads are the catalytically most active in a post-transcriptional context with low magnesium.
Publications

Carbonell, A.; Martínez de Alba, A.-E.; Flores, R.; Gago, S.; Double-stranded RNA interferes in a sequence-specific manner with the infection of representative members of the two viroid families Virology 371, 44-53, (2008) DOI: 10.1016/j.virol.2007.09.031

Infection by viroids, non-protein-coding circular RNAs, occurs with the accumulation of 21–24 nt viroid-derived small RNAs (vd-sRNAs) with characteristic properties of small interfering RNAs (siRNAs) associated to RNA silencing. The vd-sRNAs most likely derive from dicer-like (DCL) enzymes acting on viroid-specific dsRNA, the key elicitor of RNA silencing, or on the highly structured genomic RNA. Previously, viral dsRNAs delivered mechanically or agroinoculated have been shown to interfere with virus infection in a sequence-specific manner. Here, we report similar results with members of the two families of nuclear- and chloroplast-replicating viroids. Moreover, homologous vd-sRNAs co-delivered mechanically also interfered with one of the viroids examined. The interference was sequence-specific, temperature-dependent and, in some cases, also dependent on the dose of the co-inoculated dsRNA or vd-sRNAs. The sequence-specific nature of these effects suggests the involvement of the RNA induced silencing complex (RISC), which provides sequence specificity to RNA silencing machinery. Therefore, viroid titer in natural infections might be regulated by the concerted action of DCL and RISC. Viroids could have evolved their secondary structure as a compromise between resistance to DCL and RISC, which act preferentially against RNAs with compact and relaxed secondary structures, respectively. In addition, compartmentation, association with proteins or active replication might also help viroids to elude their host RNA silencing machinery.
Publications

Flores, R.; Gas, M.-E.; Molina-Serrano, D.; Nohales, M.-?.; Carbonell, A.; Gago, S.; De la Peña, M.; Daròs, J.-A.; Viroid Replication: Rolling-Circles, Enzymes and Ribozymes Viruses 1, 317-334, (2009) DOI: 10.3390/v1020317

Viroids, due to their small size and lack of protein-coding capacity, must rely essentially on their hosts for replication. Intriguingly, viroids have evolved the ability to replicate in two cellular organella, the nucleus (family Pospiviroidae) and the chloroplast (family Avsunviroidae). Viroid replication proceeds through an RNA-based rolling-circle mechanism with three steps that, with some variations, operate in both polarity strands: i) synthesis of longer-than-unit strands catalyzed by either the nuclear RNA polymerase II or a nuclear-encoded chloroplastic RNA polymerase, in both instances redirected to transcribe RNA templates, ii) cleavage to unit-length, which in the family Avsunviroidae is mediated by hammerhead ribozymes embedded in both polarity strands, while in the family Pospiviroidae the oligomeric RNAs provide the proper conformation but not the catalytic activity, and iii) circularization. The host RNA polymerases, most likely assisted by additional host proteins, start transcription from specific sites, thus implying the existence of viroid promoters. Cleavage and ligation in the family Pospiviroidae is probably catalyzed by an RNase III-like enzyme and an RNA ligase able to circularize the resulting 5’ and 3’ termini. Whether a chloroplastic RNA ligase mediates circularization in the family Avsunviroidae, or this reaction is autocatalytic, remains an open issue.
Publications

Renovell, ?.; Gago, S.; Ruiz-Ruiz, S.; Velázquez, K.; Navarro, L.; Moreno, P.; Vives, M. C.; Guerri, J.; Mapping the subgenomic RNA promoter of the Citrus leaf blotch virus coat protein gene by Agrobacterium-mediated inoculation Virology 406, 360-369, (2010) DOI: 10.1016/j.virol.2010.07.034

Citrus leaf blotch virus has a single-stranded positive-sense genomic RNA (gRNA) of 8747 nt organized in three open reading frames (ORFs). The ORF1, encoding a polyprotein involved in replication, is translated directly from the gRNA, whereas ORFs encoding the movement (MP) and coat (CP) proteins are expressed via 3' coterminal subgenomic RNAs (sgRNAs). We characterized the minimal promoter region critical for the CP-sgRNA expression in infected cells by deletion analyses using Agrobacterium-mediated infection of Nicotiana benthamiana plants. The minimal CP-sgRNA promoter was mapped between nucleotides −67 and + 50 nt around the transcription start site. Surprisingly, larger deletions in the region between the CP-sgRNA transcription start site and the CP translation initiation codon resulted in increased CP-sgRNA accumulation, suggesting that this sequence could modulate the CP-sgRNA transcription. Site-specific mutational analysis of the transcription start site revealed that the + 1 guanylate and the + 2 adenylate are important for CP-sgRNA synthesis.
Publications

Carbonell, A.; Flores, R.; Gago, S.; Trans-cleaving hammerhead ribozymes with tertiary stabilizing motifs: in vitro and in vivo activity against a structured viroid RNA Nucleic Acids Res. 39, 2432-2444, (2011) DOI: 10.1093/nar/gkq1051

Trans -cleaving hammerheads with discontinuous or extended stem I and with tertiary stabilizing motifs (TSMs) have been tested previously against short RNA substrates in vitro at low Mg 2+ concentration. However, the potential of these ribozymes for targeting longer and structured RNAs in vitro and in vivo has not been examined. Here, we report the in vitro cleavage of short RNAs and of a 464-nt highly structured RNA from potato spindle tuber viroid (PSTVd) by hammerheads with discontinuous and extended formats at submillimolar Mg 2+ . Under these conditions, hammerheads derived from eggplant latent viroid and peach latent mosaic viroid (PLMVd) with discontinuous and extended formats, respectively, where the most active. Furthermore, a PLMVd-derived hammerhead with natural TSMs showed activity in vivo against the same long substrate and interfered with systemic PSTVd infection, thus reinforcing the idea that this class of ribozymes has potential to control pathogenic RNA replicons.
Publications

Hoehenwarter, W.; Mönchgesang, S.; Neumann, S.; Majovsky, P.; Abel, S.; Müller, J.; Comparative expression profiling reveals a role of the root apoplast in local phosphate response BMC Plant Biol. 16, 106, (2016) DOI: 10.1186/s12870-016-0790-8

BackgroundPlant adaptation to limited phosphate availability comprises a wide range of responses to conserve and remobilize internal phosphate sources and to enhance phosphate acquisition. Vigorous restructuring of root system architecture provides a developmental strategy for topsoil exploration and phosphate scavenging. Changes in external phosphate availability are locally sensed at root tips and adjust root growth by modulating cell expansion and cell division. The functionally interacting Arabidopsis genes, LOW PHOSPHATE RESPONSE 1 and 2 (LPR1/LPR2) and PHOSPHATE DEFICIENCY RESPONSE 2 (PDR2), are key components of root phosphate sensing. We recently demonstrated that the LOW PHOSPHATE RESPONSE 1 - PHOSPHATE DEFICIENCY RESPONSE 2 (LPR1-PDR2) module mediates apoplastic deposition of ferric iron (Fe3+) in the growing root tip during phosphate limitation. Iron deposition coincides with sites of reactive oxygen species generation and triggers cell wall thickening and callose accumulation, which interfere with cell-to-cell communication and inhibit root growth.ResultsWe took advantage of the opposite phosphate-conditional root phenotype of the phosphate deficiency response 2 mutant (hypersensitive) and low phosphate response 1 and 2 double mutant (insensitive) to investigate the phosphate dependent regulation of gene and protein expression in roots using genome-wide transcriptome and proteome analysis. We observed an overrepresentation of genes and proteins that are involved in the regulation of iron homeostasis, cell wall remodeling and reactive oxygen species formation, and we highlight a number of candidate genes with a potential function in root adaptation to limited phosphate availability. Our experiments reveal that FERRIC REDUCTASE DEFECTIVE 3 mediated, apoplastic iron redistribution, but not intracellular iron uptake and iron storage, triggers phosphate-dependent root growth modulation. We further highlight expressional changes of several cell wall-modifying enzymes and provide evidence for adjustment of the pectin network at sites of iron accumulation in the root.ConclusionOur study reveals new aspects of the elaborate interplay between phosphate starvation responses and changes in iron homeostasis. The results emphasize the importance of apoplastic iron redistribution to mediate phosphate-dependent root growth adjustment and suggest an important role for citrate in phosphate-dependent apoplastic iron transport. We further demonstrate that root growth modulation correlates with an altered expression of cell wall modifying enzymes and changes in the pectin network of the phosphate-deprived root tip, supporting the hypothesis that pectins are involved in iron binding and/or phosphate mobilization.
Publications

Winkler, M.; Niemeyer, M.; Hellmuth, A.; Janitza, P.; Christ, G.; Samodelov, S. L.; Wilde, V.; Majovsky, P.; Trujillo, M.; Zurbriggen, M. D.; Hoehenwarter, W.; Quint, M.; Calderón Villalobos, L. I. A.; Variation in auxin sensing guides AUX/IAA transcriptional repressor ubiquitylation and destruction Nat. Commun. 8, 15706, (2017) DOI: 10.1038/ncomms15706

Auxin is a small molecule morphogen that bridges SCFTIR1/AFB-AUX/IAA co-receptor interactions leading to ubiquitylation and proteasome-dependent degradation of AUX/IAA transcriptional repressors. Here, we systematically dissect auxin sensing by SCFTIR1-IAA6 and SCFTIR1-IAA19 co-receptor complexes, and assess IAA6/IAA19 ubiquitylation in vitro and IAA6/IAA19 degradation in vivo. We show that TIR1-IAA19 and TIR1-IAA6 have distinct auxin affinities that correlate with ubiquitylation and turnover dynamics of the AUX/IAA. We establish a system to track AUX/IAA ubiquitylation in IAA6 and IAA19 in vitro and show that it occurs in flexible hotspots in degron-flanking regions adorned with specific Lys residues. We propose that this signature is exploited during auxin-mediated SCFTIR1-AUX/IAA interactions. We present evidence for an evolving AUX/IAA repertoire, typified by the IAA6/IAA19 ohnologues, that discriminates the range of auxin concentrations found in plants. We postulate that the intrinsic flexibility of AUX/IAAs might bias their ubiquitylation and destruction kinetics enabling specific auxin responses.
Publications

García, M. L.; Bó, E. D.; da Graça, J. V.; Gago-Zachert, S.; Hammond, J.; Moreno, P.; Natsuaki, T.; Pallás, V.; Navarro, J. A.; Reyes, C. A.; Luna, G. R.; Sasaya, T.; Tzanetakis, I. E.; Vaira, A. M.; Verbeek, M.; ICTV Report Consortium, .; ICTV Virus Taxonomy Profile: Ophioviridae J. Gen. Virol. 98, 1161-1162, (2017) DOI: 10.1099/jgv.0.000836

The Ophioviridae is a family of filamentous plant viruses, with single-stranded negative, and possibly ambisense, RNA genomes of 11.3–12.5 kb divided into 3–4 segments, each encapsidated separately. Virions are naked filamentous nucleocapsids, forming kinked circles of at least two different contour lengths. The sole genus, Ophiovirus, includes seven species. Four ophioviruses are soil-transmitted and their natural hosts include trees, shrubs, vegetables and bulbous or corm-forming ornamentals, both monocots and dicots. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Ophioviridae, which is available at http://www.ictv.global/report/ophioviridae.
Publications

García, M. L.; Bó, E. D.; da Graça, J. V.; Gago-Zachert, S.; Hammond, J.; Moreno, P.; Natsuaki, T.; Pallás, V.; Navarro, J. A.; Reyes, C. A.; Luna, G. R.; Sasaya, T.; Tzanetakis, I. E.; Vaira, A. M.; Verbeek, M.; ICTV Report Consortium, .; Corrigendum: ICTV Virus Taxonomy Profile: Ophioviridae J. Gen. Virol. 99, 949-949, (2018) DOI: 10.1099/jgv.0.001093

0
IPB Mainnav Search