- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
This page was last modified on 27 Jan 2025 27 Jan 2025 .
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
The hypothesized RNA-based world would have required the presence of a protected environment in which RNA, or an RNA-like molecule, could originate and express its biological activity.Recent studies have indicated that RNA molecules adsorbed/bound on clay minerals are able to persist in the presence of degrading agents, to interact with surrounding molecules, and to transmit the information contained in their nucleotide sequences.In this study, we assessed the ability of RNA molecules with catalytic activity to perform a specific reaction in a mineral environment. For this purpose, we investigated the self-cleavage reaction of the hammerhead ribozyme of the Avocado Sun Blotch Viroid (ASBVd), both in the monomeric and in dimeric forms. The monomeric transcript was tightly bound on the clay mineral montmorillonite to form a stable complex, while the behaviour of the dimeric transcript was studied in the presence of the clay particles in the reaction mixture.The results indicated that the hammerhead ribozyme was still active when the monomeric transcript was adsorbed on the clay surface, even though its efficiency was reduced to about 20% of that in solution. Moreover, the self-cleavage of clay-adsorbed molecule was significantly enhanced (∼ four times) by the presence of the 5′ reaction product.The self-cleavage reaction of the dimeric transcript in the presence of montmorillonite indicated that the mineral particles protected the RNA molecules against aspecific degradation and increased the rate of cleavage kinetics by about one order of magnitude.These findings corroborate the hypothesis that clay-rich environments would have been a good habitat in which RNA or RNA-like molecules could originate, accumulate and undergo Darwinian evolutionary processes, leading to the first living cells on Earth.
Publications
Viroids are small single-stranded circular RNAs able to infect plants. Chrysanthemum chlorotic mottle was one of the first viroid diseases reported, but identification and characterization of the causing RNA was delayed by its low accumulation in vivo. Chrysanthemum chlorotic mottle viroid (CChMVd) (398-401 nt) adopts a branched conformation instead of the rod-like secondary structure characteristic of most viroids. The natural sequence variability and the effects of artificial mutants support that the branched conformation is physiologically relevant and additionally stabilized by a kissing-loop interaction critical for RNA in vitro folding and in vivo viability. CChMVd shares structural similarities with peach latent mosaic viroid, with which forms the genus Pelamoviroid within the family Avsunviroidae. CChMVd adopts hammerhead structures that catalyze self-cleavage of the oligomeric strands of both polarities resulting from replication through a symmetric rolling-circle mechanism. The two CChMVd hammerheads display peculiarities: the plus has an extra A close to the central conserved core, and the minus an unsually long helix II. There are non-symptomatic strains (CChMVd-NS) that protect against challenge inoculation with severe strains (CChMVd-S). Introduction by site-directed mutagenesis of one of the CChMVd-NS specific mutations (UUUC?GAAA) is sufficient to change the symptomatic phenotype into non-symptomatic without altering the viroid titer. This pathogenicity determinant maps at a tetraloop of the CChMVd branched conformation. Co-inoculations with typical CChMVd-S and -NS variants showed that the infected plants remain symptomless only when the latter was in more than a 100-fold excess, indicating the higher fitness of the S variant. RNA silencing could mediate the observed cross-protection.
Publications
Glucosinolates and their associated degradation products have long been recognized for their distinctive benefits to human nutrition and plant defense. Because most of the structural genes of glucosinolate metabolism have been identified and functionally characterized in Arabidopsis thaliana, current research increasingly focuses on questions related to the regulation of glucosinolate synthesis, distribution and degradation as well as to the feasibility of engineering customized glucosinolate profiles. Here, we highlight recent progress in glucosinolate research, with particular emphasis on the biosynthetic pathway and its metabolic relationships to auxin homeostasis. We further discuss emerging insight into the signaling networks and regulatory proteins that control glucosinolate accumulation during plant development and in response to environmental challenge.
Publications
Eggplant latent viroid (ELVd) can form stable hammerhead structures in its (+) and (−) strands. These ribozymes have the longest helices I reported in natural hammerheads, with that of the ELVd (+) hammerhead being particularly stable (5/7 bp are G-C). Moreover, the trinucleotide preceding the self-cleavage site of this hammerhead is AUA, which together with GUA also found in some natural hammerheads, deviate from the GUC present in most natural hammerheads including the ELVd (−) hammerhead. When the AUA trinucleotide preceding the self-cleavage site of the ELVd (+) hammerhead was substituted by GUA and GUC, as well as by AUC (essentially absent in natural hammerheads), the values of the self-cleavage rate constants at low magnesium of the purified hammerheads were: ELVd-(+)-AUC≈ELVd-(+)-GUC>ELVd-(+)-GUA> ELVd-(+)-AUA. However, the ELVd-(+)-AUC hammerhead was the catalytically less efficient during in vitro transcription, most likely because of the transient adoption of catalytically-inactive metastable structures. These results suggest that natural hammerheads have been evolutionary selected to function co-transcriptionally, and provide a model explaining the lack of trinucleotide AUC preceding the self-cleavage site of most natural hammerheads. Comparisons with other natural hammerheads showed that the ELVd-(+)-GUC and ELVd-(+)-AUC hammerheads are the catalytically most active in a post-transcriptional context with low magnesium.
Publications
Chrysanthemum chlorotic mottle viroid (CChMVd) RNA (398–401 nucleotides) can form hammerhead ribozymes that play a functional role in its replication through a rolling-circle mechanism. In contrast to most other viroids, which adopt rod-like or quasi-rod-like secondary structures of minimal free energy, the computer-predicted conformations of CChMVd and Peach latent mosaic viroid (PLMVd) RNAs are branched. Moreover, the covariations found in a number of natural CChMVd variants support that the same or a closely related conformation exists in vivo. Here we report that the CChMVd natural variability also supports that the branched conformation is additionally stabilized by a kissing-loop interaction resembling another one proposed in PLMVd from in vitro assays. Moreover, site-directed mutagenesis combined with bioassays and progeny analysis showed that: (1) single CChMVd mutants affecting the kissing loops had low or no infectivity at all, whereas infectivity was recovered in double mutants restoring the interaction; (2) mutations affecting the structure of the regions adjacent to the kissing loops reverted to wild type or led to rearranged stems, also supporting their interaction; and (3) the interchange between 4 nucleotides of each of the two kissing loops generated a viable CChMVd variant with eight mutations. PAGE analysis under denaturing and nondenaturing conditions revealed that the kissing-loop interaction determines proper in vitro folding of CChMVd RNA. Preservation of a similar kissing-loop interaction in two hammerhead viroids with an overall low sequence similarity suggests that it facilitates in vivo the adoption and stabilization of a compact folding critical for viroid viability.
Publications
Viroids are small (246–401 nucleotides), non‐coding, circular RNAs able to replicate autonomously in certain plants. Viroids are classified into the families Pospiviroidae and Avsunviroidae , whose members replicate in the nucleus and chloroplast, respectively. Replication occurs by an RNA‐based rolling‐circle mechanism in three steps: (1) synthesis of longer‐than‐unit strands catalyzed by host DNA‐dependent RNA polymerases forced to transcribe RNA templates, (2) processing to unit‐length, which in family Avsunviroidae is mediated by hammerhead ribozymes, and (3) circularization either through an RNA ligase or autocatalytically. Disease induction might result from the accumulation of viroid‐specific small interfering RNAs that, via RNA silencing, could interfere with normal developmental pathways.
Publications
Glucosinolates are a class of secondary metabolites with important roles in plant defense and human nutrition. Here, we characterize a putative UDP‐glucose:thiohydroximate S‐glucosyltransferase, UGT74B1, to determine its role in the Arabidopsis glucosinolate pathway. Biochemical analyses demonstrate that recombinant UGT74B1 specifically glucosylates the thiohydroximate functional group. Low K m values for phenylacetothiohydroximic acid (approximately 6 μ m ) and UDP‐glucose (approximately 50 μm ) strongly suggest that thiohydroximates are in vivo substrates of UGT74B1. Insertional loss‐of‐function ugt74b1 mutants exhibit significantly decreased, but not abolished, glucosinolate accumulation. In addition, ugt74b1 mutants display phenotypes reminiscent of auxin overproduction, such as epinastic cotyledons, elongated hypocotyls in light‐grown plants, excess adventitious rooting and incomplete leaf vascularization. Indeed, during early plant development, mutant ugt74b1 seedlings accumulate nearly threefold more indole‐3‐acetic acid than the wild type. Other phenotypes, however, such as chlorosis along the leaf veins, are likely caused by thiohydroximate toxicity. Analysis of UGT74B1 promoter activity during plant development reveals expression patterns consistent with glucosinolate metabolism and induction by auxin treatment. The results are discussed in the context of known mutations in glucosinolate pathway genes and their effects on auxin homeostasis. Taken together, our work provides complementary in vitro and in vivo evidence for a primary role of UGT74B1 in glucosinolate biosynthesis.
Publications
Citrus psorosis virus (CPsV), the type member of genus Ophiovirus, has three genomic RNAs. Complete sequencing of CPsV RNA 1 revealed a size of 8184 nucleotides and Northern blot hybridization with chain specific probes showed that its non-coding strand is preferentially encapsidated. The complementary strand of RNA 1 contains two open reading frames (ORFs) separated by a 109-nt intergenic region, one located near the 5′-end potentially encoding a 24K protein of unknown function, and another of 280K containing the core polymerase motifs characteristic of viral RNA-dependent RNA polymerases (RdRp). Comparison of the core RdRp motifs of negative-stranded RNA viruses, supports grouping CPsV, Ranunculus white mottle virus (RWMV) and Mirafiori lettuce virus (MiLV) within the same genus (Ophiovirus), constituting a monophyletic group separated from all other negative-stranded RNA viruses. Furthermore, RNAs 1 of MiLV, CPsV and RWMV are similar in size and those of MiLV and CPsV also in genomic organization and sequence.
Publications
Natural hammerhead ribozymes are mostly found in some viroid and viroid‐like RNAs and catalyze their cis cleavage during replication. Hammerheads have been manipulated to act in trans and assumed to have a similar catalytic behavior in this artificial context. However, we show here that two natural cis‐acting hammerheads self‐cleave much faster than trans‐acting derivatives and other reported artificial hammerheads. Moreover, modifications of the peripheral loops 1 and 2 of one of these natural hammerheads induced a >100‐fold reduction of the self‐cleavage constant, whereas engineering a trans‐acting artificial hammerhead into a cis derivative by introducing a loop 1 had no effect. These data show that regions external to the central conserved core of natural hammerheads play a role in catalysis, and suggest the existence of tertiary interactions between these peripheral regions. The interactions, determined by the sequence and size of loops 1 and 2 and most likely of helices I and II, must result from natural selection and should be studied in order to better understand the hammerhead requirements in vivo.
Publications
Natural isothiocyanates, produced during plant tissue damage from methionine‐derived glucosinolates, are potent inducers of mammalian phase 2 detoxification enzymes such as quinone reductase (QR). A greatly simplified bioassay for glucosinolates based on induction and colorimetric detection of QR activity in murine hepatoma cells is described. It is demonstrated that excised leaf disks of Arabidopsis thaliana (ecotype Columbia) can directly and reproducibly substitute for cell‐free leaf extracts as inducers of murine QR, which reduces sample preparation to a minimum and maximizes throughput. A comparison of 1 and 3 mm diameter leaf disks indicated that QR inducer potency was proportional to disk circumference (extent of tissue damage) rather than to area. When compared to the QR inducer potency of the corresponding amount of extract, 1 mm leaf disks were equally effective, whereas 3 mm disks were 70% as potent. The QR inducer potency of leaf disks correlated positively with the content of methionine‐derived glucosinolates, as shown by the analysis of wild‐type plants and mutant lines with lower or higher glucosinolate content. Thus, the microtitre plate‐based assay of single leaf disks provides a robust and inexpensive visual method for rapidly screening large numbers of plants in mapping populations or mutant collections and may be applicable to other glucosinolate‐producing species.
This page was last modified on 27 Jan 2025 27 Jan 2025 .


