- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
This page was last modified on 27 Jan 2025 27 Jan 2025 .
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Leaves of tobacco (Nicotiana tabacum) are covered with glandular trichomes that produce sucrose esters and diterpenoids in varying quantities, depending on cultivar type. The bicyclic diterpene Z‐abienol is the major labdanoid present in some oriental tobacco cultivars, where it constitutes a precursor of important flavours and aromas. We describe here the identification and characterization of two genes governing the biosynthesis of Z‐abienol in N. tabacum. As for other angiosperm labdanoid diterpenes, the biosynthesis of Z‐abienol proceeds in two steps. NtCPS2 encodes a class‐II terpene synthase that synthesizes 8‐hydroxy‐copalyl diphosphate, and NtABS encodes a kaurene synthase‐like (KSL) protein that uses 8‐hydroxy‐copalyl diphosphate to produce Z‐abienol. Phylogenetic analysis indicates that NtABS belongs to a distinct clade of KSL proteins that comprises the recently identified tomato (Solanum habrochaites) santalene and bergamotene synthase. RT‐PCR results show that both genes are preferentially expressed in trichomes. Moreover, microscopy of NtCPS2 promoter‐GUS fusion transgenics demonstrated a high specificity of expression to trichome glandular cells. Ectopic expression of both genes, but not of either one alone, driven by a trichome‐specific promoter in transgenic Nicotiana sylvestris conferred Z‐abienol formation to this species, which does not normally produce it. Furthermore, sequence analysis of over 100 tobacco cultivars revealed polymorphisms in NtCPS2 that lead to a prematurely truncated protein in cultivars lacking Z‐abienol, thus establishing NtCPS2 as a major gene controlling Z‐abienol biosynthesis in tobacco. These results offer new perspectives for tobacco breeding and the metabolic engineering of labdanoid diterpenes, as well as for structure–function relationship studies of terpene synthases.
Publications
Glandular trichomes cover the surface of many plant species. They exhibit tremendous diversity, be it in their shape or the compounds they secrete. This diversity is expressed between species but also within species or even individual plants. The industrial uses of some trichome secretions and their potential as a defense barrier, for example against arthropod pests, has spurred research into the biosynthesis pathways that lead to these specialized metabolites. Because complete biosynthesis pathways take place in the secretory cells, the establishment of trichome‐specific expressed sequence tag libraries has greatly accelerated their elucidation. Glandular trichomes also have an important metabolic capacity and may be considered as true cell factories. To fully exploit the potential of glandular trichomes as breeding or engineering objects, several research areas will have to be further investigated, such as development, patterning, metabolic fluxes and transcription regulation. The purpose of this review is to provide an update on the methods and technologies which have been used to investigate glandular trichomes and to propose new avenues of research to deepen our understanding of these specialized structures.
Publications
BackgroundPhytohormones are the key metabolites participating in the regulation of multiple functions of plant organism. Among them, jasmonates, as well as abscisic and salicylic acids are responsible for triggering and modulating plant reactions targeted against pathogens and herbivores, as well as resistance to abiotic stress (drought, UV-irradiation and mechanical wounding). These factors induce dramatic changes in phytohormone biosynthesis and transport leading to rapid local and systemic stress responses. Understanding of underlying mechanisms is of principle interest for scientists working in various areas of plant biology. However, highly sensitive, precise and high-throughput methods for quantification of these phytohormones in small samples of plant tissues are still missing.ResultsHere we present an LC-MS/MS method for fast and highly sensitive determination of jasmonates, abscisic and salicylic acids. A single-step sample preparation procedure based on mixed-mode solid phase extraction was efficiently combined with essential improvements in mobile phase composition yielding higher efficiency of chromatographic separation and MS-sensitivity. This strategy resulted in dramatic increase in overall sensitivity, allowing successful determination of phytohormones in small (less than 50 mg of fresh weight) tissue samples. The method was completely validated in terms of analyte recovery, sensitivity, linearity and precision. Additionally, it was cross-validated with a well-established GC-MS-based procedure and its applicability to a variety of plant species and organs was verified.ConclusionThe method can be applied for the analyses of target phytohormones in small tissue samples obtained from any plant species and/or plant part relying on any commercially available (even less sensitive) tandem mass spectrometry instrumentation.
Publications
Tomato breeding has been tremendously efficient in increasing fruit quality and quantity but did not focus on improving herbivore resistance. The biosynthetic pathway for the production of 7-epizingiberene in a wild tomato was introduced into a cultivated greenhouse variety with the aim to obtain herbivore resistance. 7-Epizingiberene is a specific sesquiterpene with toxic and repellent properties that is produced and stored in glandular trichomes. We identified 7-epizingiberene synthase (ShZIS) that belongs to a new class of sesquiterpene synthases, exclusively using Z-Z-farnesyl-diphosphate (zFPP) in plastids, probably arisen through neo-functionalization of a common ancestor. Expression of the ShZIS and zFPP synthases in the glandular trichomes of cultivated tomato resulted in the production of 7-epizingiberene. These tomatoes gained resistance to several herbivores that are pests of tomato. Hence, introduction of this sesquiterpene biosynthetic pathway into cultivated tomatoes resulted in improved herbivore resistance.
Publications
Functional gene clusters, containing two or more genes encoding different enzymes for the same pathway, are sometimes observed in plant genomes, most often when the genes specify the synthesis of specialized defensive metabolites. Here, we show that a cluster of genes in tomato (Solanum lycopersicum; Solanaceae) contains genes for terpene synthases (TPSs) that specify the synthesis of monoterpenes and diterpenes from cis-prenyl diphosphates, substrates that are synthesized by enzymes encoded by cis-prenyl transferase (CPT) genes also located within the same cluster. The monoterpene synthase genes in the cluster likely evolved from a diterpene synthase gene in the cluster by duplication and divergence. In the orthologous cluster in Solanum habrochaites, a new sesquiterpene synthase gene was created by a duplication event of a monoterpene synthase followed by a localized gene conversion event directed by a diterpene synthase gene. The TPS genes in the Solanum cluster encoding cis-prenyl diphosphate–utilizing enzymes are closely related to a tobacco (Nicotiana tabacum; Solanaceae) diterpene synthase encoding Z-abienol synthase (Nt-ABS). Nt-ABS uses the substrate copal-8-ol diphosphate, which is made from the all-trans geranylgeranyl diphosphate by copal-8-ol diphosphate synthase (Nt-CPS2). The Solanum gene cluster also contains an ortholog of Nt-CPS2, but it appears to encode a nonfunctional protein. Thus, the Solanum functional gene cluster evolved by duplication and divergence of TPS genes, together with alterations in substrate specificity to utilize cis-prenyl diphosphates and through the acquisition of CPT genes.
Publications
The diversity of plant natural product (PNP) molecular structures is reflected in the variety of biochemical and genetic pathways that lead to their formation and accumulation. Plant secondary metabolites are important commodities, and include fragrances, colorants, and medicines. Increasing the extractable amount of PNP through plant breeding, or more recently by means of metabolic engineering, is a priority. The prerequisite for any attempt at metabolic engineering is a detailed knowledge of the underlying biosynthetic and regulatory pathways in plants. Over the past few decades, an enormous body of information about the biochemistry and genetics of biosynthetic pathways involved in PNPs production has been generated. In this review, we focus on the three large classes of plant secondary metabolites: terpenoids (or isoprenoids), phenylpropanoids, and alkaloids. All three provide excellent examples of the tremendous efforts undertaken to boost our understanding of biosynthetic pathways, resulting in the first successes in plant metabolic engineering. We further consider what essential information is still missing, and how future research directions could help achieve the rational design of plants as chemical factories for high‐value products.
Publications
BackgroundCharacterization of plant terpene synthases is typically done by production of recombinant enzymes in Escherichia coli. This is often difficult due to solubility and codon usage issues. Furthermore, plant terpene synthases which are targeted to the plastids, such as diterpene synthases, have to be shortened in a more or less empirical approach to improve expression. We report here an optimized Agrobacterium-mediated transient expression assay in Nicotiana benthamiana for plant diterpene synthase expression and product analysis.ResultsAgrobacterium-mediated transient expression of plant diterpene synthases in N. benthamiana led to the accumulation of diterpenes within 3 days of infiltration and with a maximum at 5 days. Over 50% of the products were exported onto the leaf surface, thus considerably facilitating the analysis by reducing the complexity of the extracts. The robustness of the method was tested by expressing three different plant enzymes, cembratrien-ol synthase from Nicotiana sylvestris, casbene synthase from Ricinus communis and levopimaradiene synthase from Gingko biloba. Furthermore, co-expression of a 1-deoxy-D-xylulose-5-phosphate synthase from tomato and a geranylgeranyl diphosphate synthase from tobacco led to a 3.5-fold increase in the amount of cembratrien-ol produced, with maximum yields reaching 2500 ng/cm2.ConclusionWith this optimized method for diterpene synthase expression and product analysis, a single infiltrated leaf of N. benthamiana would be sufficient to produce quantities required for the structure elucidation of unknown diterpenes. The method will also be of general use for gene function discovery, pathway reconstitution and metabolic engineering of diterpenoid biosynthesis in plants.
Publications
Ribosomal 18S RNA is widely used as a housekeeping gene in expression studies, including end-point PCR, Northern analysis, and real-time experiments. However, there are two disadvantages and two points of error introduction in using 18S rRNA as a reference gene. First, 18S has no poly(A) tail, so it is commonly reverse transcribed with specific primers or random hexamers, independently from poly(dT)-primed transcripts. Secondly, due to its abundance, the 18S cDNA must be extensively diluted to be comparable to the tested genes. In this study, 18S rRNA from five taxonomically diverse plant species, including Physcomitrella patens, Adiantum capillus-veneris, Centaurium erythraea, Arabidopsis thaliana, and Zea mays, was successfully reverse transcribed (RT) using poly(dT)18. As all other homopolymers, including poly(dA)18, poly(dC)18, and poly(dG)18, could serve as RT primers, it was concluded that homopolymers anneal by mispriming at the sites of complementary homopolymeric runs or segments rich in complementary base. Poly(dC)18 was the most efficient as RT primer, and the only one which interfered with subsequent PCR, giving species-specific pattern of products. Poly(dT)-primed RT reactions were less efficient in comparison to specific primer or random hexamer-primed reactions. Homopolymeric priming of 18S in RT reactions is general in terms of RNA origin and the method of RNA isolation and is possibly applicable to other tailless housekeeping genes.
Publications
Fluctuations in oxygen tension during tissue remodeling impose a major metabolic challenge in human tumors. Stem-like tumor cells in glioblastoma, the most common malignant brain tumor, possess extraordinary metabolic flexibility, enabling them to initiate growth even under non-permissive conditions. We identified a reciprocal metabolic switch between the pentose phosphate pathway (PPP) and glycolysis in glioblastoma stem-like (GS) cells. Expression of PPP enzymes is upregulated by acute oxygenation but downregulated by hypoxia, whereas glycolysis enzymes, particularly those of the preparatory phase, are regulated inversely. Glucose flux through the PPP is reduced under hypoxia in favor of flux through glycolysis. PPP enzyme expression is elevated in human glioblastomas compared to normal brain, especially in highly proliferative tumor regions, whereas expression of parallel preparatory phase glycolysis enzymes is reduced in glioblastomas, except for strong upregulation in severely hypoxic regions. Hypoxia stimulates GS cell migration but reduces proliferation, whereas oxygenation has opposite effects, linking the metabolic switch to the “go or grow” potential of the cells. Our findings extend Warburg’s observation that tumor cells predominantly utilize glycolysis for energy production, by suggesting that PPP activity is elevated in rapidly proliferating tumor cells but suppressed by acute severe hypoxic stress, favoring glycolysis and migration to protect cells against hypoxic cell damage.
Publications
The seed residues left after pressing of rapeseed oil are rich in proteins and could be used for human nutrition and animal feeding. These press cakes contain, however, antinutritives, with fiber being the most abundant one. The analysis of fiber phenolic component (localized to seed coat cell walls) is, therefore, important in breeding and food quality control. However, correct structure and content assignments of cell wall-bound phenolics are challenging due to their low stability during sample preparation. Here, a novel LC-MS/MS-based method for the simultaneous identification and quantitation of 66 cell wall-bound phenolics and their derivatives is described. The method was internally standardized, corrected for degradation effects during sample preparation, and cross-validated with a well-established UV-based procedure. This approach was successfully applied to the analysis of cell wall phenolic patterns in different B. napus cultivars and proved to be suitable for marker compound search as well as assay development.
This page was last modified on 27 Jan 2025 27 Jan 2025 .

