Publications - Cell and Metabolic Biology
- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
This page was last modified on 27 Jan 2025 .
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Publications - Cell and Metabolic Biology
Publications
Plant natural products (PNPs) are unique in that they represent a vast array of different structural features, ranging from relatively simple molecules to very complex ones. Given the fact that many plant secondary metabolites exhibit profound biological activity, they are frequently used as fragrances and flavors, medicines, as well as industrial chemicals. As the intricate structures of PNPs often cannot be mimicked by chemical synthesis, the original plant providers constitute the sole source for their industrial, large‐scale production. However, sufficient supply is not guaranteed for all molecules of interest, making the development of alternative production systems a priority. Modern techniques, such as genome mining and thorough biochemical analysis, have helped us gain preliminary understanding of the enzymatic formation of the valuable ingredients in planta. Herein, we review recent advances in the application of biocatalytical processes, facilitating generation of complex PNPs through utilization of plant‐derived specific enzymes and combinatorial biochemistry. We further evaluate the options of employing heterologous organisms harboring PNP biosynthetic pathways for the production of secondary metabolites of interest.
Publications
The diversity of plant natural product (PNP) molecular structures is reflected in the variety of biochemical and genetic pathways that lead to their formation and accumulation. Plant secondary metabolites are important commodities, and include fragrances, colorants, and medicines. Increasing the extractable amount of PNP through plant breeding, or more recently by means of metabolic engineering, is a priority. The prerequisite for any attempt at metabolic engineering is a detailed knowledge of the underlying biosynthetic and regulatory pathways in plants. Over the past few decades, an enormous body of information about the biochemistry and genetics of biosynthetic pathways involved in PNPs production has been generated. In this review, we focus on the three large classes of plant secondary metabolites: terpenoids (or isoprenoids), phenylpropanoids, and alkaloids. All three provide excellent examples of the tremendous efforts undertaken to boost our understanding of biosynthetic pathways, resulting in the first successes in plant metabolic engineering. We further consider what essential information is still missing, and how future research directions could help achieve the rational design of plants as chemical factories for high‐value products.
Publications
In addition to a previously characterized 13-lipoxygenase of 100 kDa encoded by LOX2:Hv:1 [Vörös et al., Eur. J. Biochem. 251 (1998), 36 44], two fulllength cDNAs (LOX2:Hv:2, LOX2:Hv:3) were isolated from barley leaves (Hordeum vulgare cv. Salome) and characterized. Both of them encode 13-lipoxygenases with putative target sequences for chloroplast import. Immunogold labeling revealed preferential, if not exclusive, localization of lipoxygenase proteins in the stroma. The ultrastructure of the chloroplast was dramatically altered following methyl jasmonate treatment, indicated by a loss of thylakoid membranes, decreased number of stacks and appearance of numerous osmiophilic globuli. The three 13-lipoxygenases are differentially expressed during treatment with jasmonate, salicylate, glucose or sorbitol. Metabolite profiling of free linolenic acid and free linoleic acid, the substrates of lipoxygenases, in water floated or jasmonatetreated leaves revealed preferential accumulation of linolenic acid. Remarkable amounts of free 9- as well as 13-hydroperoxy linolenic acid were found. In addition, metabolites of these hydroperoxides, such as the hydroxy derivatives and the respective aldehydes, appeared following methyl jasmonate treatment. These findings were substantiated by metabolite profiling of isolated chloroplasts, and subfractions including the envelope, the stroma and the thylakoids, indicating a preferential occurrence of lipoxygenasederived products in the stroma and in the envelope. These data revealed jasmonateinduced activation of the hydroperoxide lyase and reductase branch within the lipoxygenase pathway and suggest differential activity of the three 13-lipoxygenases under different stress conditions.
This page was last modified on 27 Jan 2025 .