Publications - Cell and Metabolic Biology
- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
This page was last modified on 27 Jan 2025 .
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Publications - Cell and Metabolic Biology
Publications
Methylerythritol cyclodiphosphate (MEcPP) is an intermediate in the biosynthesis of isoprenoids in plant plastids and in bacteria, and acts as a stress signal in plants. Here, we show that MEcPP regulates biofilm formation in Escherichia coli K-12 MG1655. Increased MEcPP levels, triggered by genetic manipulation or oxidative stress, inhibit biofilm development and production of fimbriae. Deletion of fimE, encoding a protein known to downregulate production of adhesive fimbriae, restores biofilm formation in cells with elevated MEcPP levels. Limited proteolysis-coupled mass spectrometry (LiP-MS) reveals that MEcPP interacts with the global regulatory protein H-NS, which is known to repress transcription of fimE. MEcPP prevents the binding of H-NS to the fimE promoter. Therefore, our results indicate that MEcPP can regulate biofilm formation by modulating H-NS activity and thus reducing fimbriae production. Further research is needed to test whether MEcPP plays similar regulatory roles in other bacteria.
Publications
Most Gram-negative phytopathogenic bacteria inject type III effector (T3E) proteins into plant cells to manipulate signaling pathways to the pathogen’s benefit. In resistant plants, specialized immune receptors recognize single T3Es or their biochemical activities, thus halting pathogen ingress. However, molecular function and mode of recognition for most T3Es remains elusive. Here, we show that the Xanthomonas T3E XopH possesses phytase activity, i.e., dephosphorylates phytate (myo-inositol-hexakisphosphate, InsP6), the major phosphate storage compound in plants, which is also involved in pathogen defense. A combination of biochemical approaches, including a new NMR-based method to discriminate inositol polyphosphate enantiomers, identifies XopH as a naturally occurring 1-phytase that dephosphorylates InsP6 at C1. Infection of Nicotiana benthamiana and pepper by Xanthomonas results in a XopH-dependent conversion of InsP6 to InsP5. 1-phytase activity is required for XopH-mediated immunity of plants carrying the Bs7 resistance gene, and for induction of jasmonate- and ethylene-responsive genes in N. benthamiana.
Publications
Rosemary extracts containing the phenolic diterpenes carnosic acid and its derivative carnosol are approved food additives used in an increasingly wide range of products to enhance shelf-life, thanks to their high anti-oxidant activity. We describe here the elucidation of the complete biosynthetic pathway of carnosic acid and its reconstitution in yeast cells. Cytochrome P450 oxygenases (CYP76AH22-24) from Rosmarinus officinalis and Salvia fruticosa already characterized as ferruginol synthases are also able to produce 11-hydroxyferruginol. Modelling-based mutagenesis of three amino acids in the related ferruginol synthase (CYP76AH1) from S. miltiorrhiza is sufficient to convert it to a 11-hydroxyferruginol synthase (HFS). The three sequential C20 oxidations for the conversion of 11-hydroxyferruginol to carnosic acid are catalysed by the related CYP76AK6-8. The availability of the genes for the biosynthesis of carnosic acid opens opportunities for the metabolic engineering of phenolic diterpenes, a class of compounds with potent anti-oxidant, anti-inflammatory and anti-tumour activities.
Publications
The pigments of Opuntia ficus‐indica fruits, which are derived from the betalain rather than anthocyanin pathway, have an extraordinary range in colour from lime green, orange, red to purple. This is a result from varying concentrations and proportions of about half a dozen betaxanthins and betacyanins. The yellow‐orange betaxanthins are derived from spontaneous condensation of betalamic acid with amines or amino acids. The reddish‐purple betacyanins are enzymatically formed from betalamic acid and cyclo ‐dihydroxyphenylalanine (DOPA) yielding betanidin and further glycosylated on either of the two hydroxyls of the cyclo ‐DOPA moiety. In the present work, degenerated primers were used to obtain partial genomic sequences of two major genes in the biosynthetic pathway for betalains, that is the 4,5‐extradiol dioxygenase which forms the betalamic acid responsible for the yellow colour and a putative 5‐O ‐glucosyltransferase which glycosylates betanidin in Dorotheanthus bellidiformis and may be responsible for the red colour. Differences in the genomic DNA between coloured versus non‐coloured varieties were not found. Regulatory mechanisms seem to independently control pigmentation of O. ficus‐indica fruit tissues for inner core, peel and epidermis. Core pigmentation occurs first and well before fruit maturity and peel pigmentation. Peel pigmentation is fully developed at maturity, presumably related to maximum soluble solids. Epidermal pigmentation appears to be independent of core and peel pigmentation, perhaps because of light stimulation. Similar control mechanisms exist through transcription factors for the major enzyme regulating anthocyanin production in grapes.
This page was last modified on 27 Jan 2025 .