Publications - Cell and Metabolic Biology
- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
This page was last modified on 27 Jan 2025 .
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Publications - Cell and Metabolic Biology
Publications
Developing new biopolymer-based materials with bio-identical properties is a significant challenge in modern science. One interesting route to this goal involves the biomineralization of collagen, a pre-structured and widely available protein, into a material with interesting properties. A prerequisite for biomineralization is the ability of cations (e.g., calcium) to bind to the protein and to result in concert with appropriate anions (e.g., phosphate) in composite material with e.g., bone-like properties. In order to increase the number of binding sites it is necessary to modify the protein prior to mineralization. For this glucuronic acid (GA) was used due to its carbonyl and carboxyl groups to derivatize proteinogenic amino groups transferring them into negatively charged carboxyl groups. Our experiments showed for the first time, that Nɛ-carboxymethyllysine is the major product of in vitro non-enzymatic glycosylation of collagen by glucuronic acid. For an unequivocal determination of the reaction products, the lysine residues of collagen and of the model peptide were carboxymethylated through a reductive alkylation with glyoxalic acid and compared to the glucuronic acid derivatives. Beside their identical mass spectra the common structure elements could be confirmed with FTIR. Thus, in the context of matrix engineering, by producing Nɛ-carboxymethyllysine, glucuronic acid offers a convenient way of introducing additional stable acidic groups into protein matrices.
Publications
In contrast to animal lectins, no evidence has indicated the occurrence of plant lectins, which recognize and bind “endogenous” receptors and accordingly are involved in recognition mechanisms within the organism itself. Here we show that the plant hormone jasmonic acid methyl ester (JAME) induces in leaves of Nicotiana tabacum (var. Samsun NN) the expression of a lectin that is absent from untreated plants. The lectin specifically binds to oligomers of N‐acetylglucosamine and is detected exclusively in the cytoplasm and the nucleus. Both the subcellular location and specificity indicate that the Nicotiana tabacum agglutinin (called Nictaba) may be involved in the regulation of gene expression in stressed plants through specific protein‐carbohydrate interactions with regulatory cytoplasmic/nuclear glycoproteins. Searches in the databases revealed that many flowering plants contain sequences encoding putative homologues of the tobacco lectin, which suggest that Nictaba is the prototype of a widespread or possibly ubiquitous family of lectins with a specific endogenous role.
This page was last modified on 27 Jan 2025 .