Publications - Cell and Metabolic Biology
- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
This page was last modified on 27 Jan 2025 .
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Publications - Cell and Metabolic Biology
Publications
BackgroundSimilarly to the legume-rhizobia symbiosis, the arbuscular mycorrhiza interaction is controlled by autoregulation representing a feedback inhibition involving the CLAVATA1-like receptor kinase NARK in shoots. However, little is known about signals and targets down-stream of NARK. To find NARK-related transcriptional changes in mycorrhizal soybean (Glycine max) plants, we analyzed wild-type and two nark mutant lines interacting with the arbuscular mycorrhiza fungus Rhizophagus irregularis.ResultsAffymetrix GeneChip analysis of non-inoculated and partially inoculated plants in a split-root system identified genes with potential regulation by arbuscular mycorrhiza or NARK. Most transcriptional changes occur locally during arbuscular mycorrhiza symbiosis and independently of NARK. RT-qPCR analysis verified nine genes as NARK-dependently regulated. Most of them have lower expression in roots or shoots of wild type compared to nark mutants, including genes encoding the receptor kinase GmSIK1, proteins with putative function as ornithine acetyl transferase, and a DEAD box RNA helicase. A predicted annexin named GmAnnx1a is differentially regulated by NARK and arbuscular mycorrhiza in distinct plant organs. Two putative CCAAT-binding transcription factor genes named GmNF-YA1a and GmNF-YA1b are down-regulated NARK-dependently in non-infected roots of mycorrhizal wild-type plants and functional gene analysis confirmed a positive role for these genes in the development of an arbuscular mycorrhiza symbiosis.ConclusionsOur results indicate GmNF-YA1a/b as positive regulators in arbuscular mycorrhiza establishment, whose expression is down-regulated by NARK in the autoregulated root tissue thereby diminishing subsequent infections. Genes regulated independently of arbuscular mycorrhization by NARK support an additional function of NARK in symbioses-independent mechanisms.
Publications
In contrast to animal lectins, no evidence has indicated the occurrence of plant lectins, which recognize and bind “endogenous” receptors and accordingly are involved in recognition mechanisms within the organism itself. Here we show that the plant hormone jasmonic acid methyl ester (JAME) induces in leaves of Nicotiana tabacum (var. Samsun NN) the expression of a lectin that is absent from untreated plants. The lectin specifically binds to oligomers of N‐acetylglucosamine and is detected exclusively in the cytoplasm and the nucleus. Both the subcellular location and specificity indicate that the Nicotiana tabacum agglutinin (called Nictaba) may be involved in the regulation of gene expression in stressed plants through specific protein‐carbohydrate interactions with regulatory cytoplasmic/nuclear glycoproteins. Searches in the databases revealed that many flowering plants contain sequences encoding putative homologues of the tobacco lectin, which suggest that Nictaba is the prototype of a widespread or possibly ubiquitous family of lectins with a specific endogenous role.
This page was last modified on 27 Jan 2025 .