Publications - Cell and Metabolic Biology
- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Preprints
This page was last modified on 27 Jan 2025 .
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Publications - Cell and Metabolic Biology
Preprints
Fungal small RNAs (sRNAs) hijack the plant RNA silencing pathway to manipulate host gene expression, named cross-kingdom RNA interference (ckRNAi). It is currently unknown how conserved and significant ckRNAi is for microbial virulence. Here, we found for the first time that sRNAs of a pathogen representing the oomycete kingdom invade the host plant’s Argonaute (AGO)/RNA-induced silencing complex. To demonstrate the functionality of the plant-invading oomycete Hyaloperonospora arabidopsidis sRNAs (HpasRNAs), we designed a novel CRISPR endoribonuclease Csy4/GUS repressor reporter to visualize in situ pathogen-induced target suppression in Arabidopsis thaliana host plant. By using 5’ RACE-PCR we demonstrated HpasRNAs-directed cleavage of plant mRNAs. The significant role of HpasRNAs together with AtAGO1 in virulence was demonstrated by plant atago1 mutants and by transgenic Arabidopsis expressing a target mimic to block HpasRNAs, that both exhibited enhanced resistance. Individual HpasRNA plant targets contributed to host immunity, as Arabidopsis gene knockout or HpasRNA-resistant gene versions exhibited quantitative enhanced or reduced susceptibility, respectively. Together with previous reports, we found that ckRNAi is conserved among oomycete and fungal pathogens.
This page was last modified on 27 Jan 2025 .