Publications - Cell and Metabolic Biology
- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
Publications
This page was last modified on 27 Jan 2025 .
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Publications - Cell and Metabolic Biology
Publications
Black pepper (Piper nigrum L.) is the world’s most popular spice and is also used as an ingredient in traditional medicine. Its pungent perception is due to the interaction of its major compound, piperine (1-piperoyl-piperidine) with the human TRPV-1 or vanilloid receptor. We now identify the hitherto concealed enzymatic formation of piperine from piperoyl coenzyme A and piperidine based on a differential RNA-Seq approach from developing black pepper fruits. This enzyme is described as piperine synthase (piperoyl-CoA:piperidine piperoyl transferase) and is a member of the BAHD-type of acyltransferases encoded by a gene that is preferentially expressed in immature fruits. A second BAHD-type enzyme, also highly expressed in immature black pepper fruits, has a rather promiscuous substrate specificity, combining diverse CoA-esters with aliphatic and aromatic amines with similar efficiencies, and was termed piperamide synthase. Recombinant piperine and piperamide synthases are members of a small gene family in black pepper. They can be used to facilitate the microbial production of a broad range of medicinally relevant aliphatic and aromatic piperamides based on a wide array of CoA-donors and amine-derived acceptors, offering widespread applications.
Publications
AbstractFungal unspecific peroxygenases (UPOs) represent an enzyme class catalysing versatile oxyfunctionalisation reactions on a broad substrate scope. They are occurring as secreted, glycosylated proteins bearing a haem-thiolate active site and rely on hydrogen peroxide as the oxygen source. However, their heterologous production in a fast-growing organism suitable for high throughput screening has only succeeded once—enabled by an intensive directed evolution campaign. We developed and applied a modular Golden Gate-based secretion system, allowing the first production of four active UPOs in yeast, their one-step purification and application in an enantioselective conversion on a preparative scale. The Golden Gate setup was designed to be universally applicable and consists of the three module types: i) signal peptides for secretion, ii) UPO genes, and iii) protein tags for purification and split-GFP detection. The modular episomal system is suitable for use in Saccharomyces cerevisiae and was transferred to episomal and chromosomally integrated expression cassettes in Pichia pastoris. Shake flask productions in Pichia pastoris yielded up to 24 mg/L secreted UPO enzyme, which was employed for the preparative scale conversion of a phenethylamine derivative reaching 98.6 % ee. Our results demonstrate a rapid, modular yeast secretion workflow of UPOs yielding preparative scale enantioselective biotransformations.
Publications
In barley leaves a group of genes is expressed in response to treatment with jasmonates and abscisic acid (ABA) [21]. One of these genes coding for a jasmonate-induced protein of 23 kDa (JIP-23) was analyzed to find out the link between ABA and jasmonates by recording its expression upon modulating independently, the endogenous level of both of them. By use of inhibitors of JA synthesis and ABA degradation, and the ABA-deficient mutant Az34, as well as of cultivar-specific differences, it was shown that endogenous jasmonate increases are necessary and sufficient for expression of this gene. The endogenous rise of ABA did not induce synthesis of JIP-23, whereas exogenous ABA did not act via jasmonates. Different signalling pathways are suggested and discussed.
Publications
This article surveys the currently isolated and identified GA conjugates, their synthesis and evaluates modern methods for analysing GA glucose conjugates. The metabolism of applied GAs in higher plant systems leading, in most cases, to GA conjugates is also considered. The enzymology of the formation and hydrolysis of GA glucose conjugates is discussed in connection with their possible physiological function.
Publications
Data on the occurrence of free and conjugated gibberellins in different tribes of Gramineae are compiled and discussed with regard to their biosynthetic pathways. From the gibberellins detected so far the functioning of both the early 13-hydroxylation and the non-3,13-hydroxylation pathway of GA biosynthesis in gramineous plants can be deduced and the discovery of further gibberellin conjugates may be expected.
This page was last modified on 27 Jan 2025 .