Publications - Cell and Metabolic Biology
- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
This page was last modified on 27 Jan 2025 .
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Publications - Cell and Metabolic Biology
Publications
In a split-root system root colonization by the arbuscular mycorrhizal fungus Glomus mosseae on one side is reduced when roots on the other side are already colonized by G. mosseae. Root colonization by arbuscular mycorrhizal fungi enhances the P-status of plants, thus the observed suppressional effect on further root colonization in precolonized barley plants could be P-level regulated. Split-root systems allow to separate plant mediated P-effects on root colonization by arbuscular mycorrhizal fungi from direct P-effects on arbuscular mycorrhizal fungi. By adding a KH2PO4-solution to one side of the split-root system of non-mycorrhizal control plants, higher P-levels were obtained as in split-root systems of G. mosseae precolonized plants. Subsequent inoculation with G. mosseae of the P-supplied and the precolonized plants resulted in an inhibition of root colonization in the precolonized plants, but not in the P-supplied plants, discarding the enhanced P-level as the responsible factor for the observed suppression. Cyclohexenone derivatives are secondary plant compounds only found in roots of mycorrhizal plants. Analysis of cyclohexenone derivatives in mycorrhizal and non-mycorrhizal roots in split-root systems revealed that cyclohexenone derivatives can be detected in mycorrhizal roots, but not in non-mycorrhizal roots of mycorrhizal plants. The presented results show clearly that cyclohexenone derivatives are not systemically accumulated and that the P-levels are not the responsible factors for the observed systemic suppression of mycorrhization in roots of precolonized barley plants.
This page was last modified on 27 Jan 2025 .