Publications - Cell and Metabolic Biology
- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
This page was last modified on 27 Jan 2025 .
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Publications - Cell and Metabolic Biology
Publications
Salinity is a serious challenge to global agriculture and threatens human food security. Plant cells can respond to salt stress either by activation of adaptive responses, or by programmed cell death. The mechanisms deciding the respective response are far from understood, but seem to depend on the degree, to which mitochondria can maintain oxidative homeostasis. Using plant PeptoQ, a Trojan Peptoid, as vehicle, it is possible to transport a coenzyme Q10 (CoQ10) derivative into plant mitochondria. We show that salinity stress in tobacco BY-2 cells (Nicotiana tabacum L. cv Bright Yellow-2) can be mitigated by pretreatment with plant PeptoQ with respect to numerous aspects including proliferation, expansion, redox homeostasis, and programmed cell death. We tested the salinity response for transcripts from nine salt-stress related-genes representing different adaptive responses. While most did not show any significant response, the salt response of the transcription factor NtNAC, probably involved in mitochondrial retrograde signaling, was significantly modulated by the plant PeptoQ. Most strikingly, transcripts for the mitochondrial, Mn-dependent Superoxide Dismutase were rapidly and drastically upregulated in presence of the peptoid, and this response was disappearing in presence of salt. The same pattern, albeit at lower amplitude, was seen for the sodium exporter SOS1. The findings are discussed by a model, where plant PeptoQ modulates retrograde signalling to the nucleus leading to a strong expression of mitochondrial SOD, what renders mitochondria more resilient to perturbations of oxidative balance, such that cells escape salt induced cell death and remain viable.
Publications
Site-directed methods for the generation of genetic diversity are essential tools in the field of directed enzyme evolution. The Golden Gate cloning technique has been proven to be an efficient tool for a variety of cloning setups. The utilization of restriction enzymes which cut outside of their recognition domain allows the assembly of multiple gene fragments obtained by PCR amplification without altering the open reading frame of the reconstituted gene. We have developed a protocol, termed Golden Mutagenesis that allows the rapid, straightforward, reliable and inexpensive construction of mutagenesis libraries. One to five amino acid positions within a coding sequence could be altered simultaneously using a protocol which can be performed within one day. To facilitate the implementation of this technique, a software library and web application for automated primer design and for the graphical evaluation of the randomization success based on the sequencing results was developed. This allows facile primer design and application of Golden Mutagenesis also for laboratories, which are not specialized in molecular biology.
Publications
BackgroundCharacterization of plant terpene synthases is typically done by production of recombinant enzymes in Escherichia coli. This is often difficult due to solubility and codon usage issues. Furthermore, plant terpene synthases which are targeted to the plastids, such as diterpene synthases, have to be shortened in a more or less empirical approach to improve expression. We report here an optimized Agrobacterium-mediated transient expression assay in Nicotiana benthamiana for plant diterpene synthase expression and product analysis.ResultsAgrobacterium-mediated transient expression of plant diterpene synthases in N. benthamiana led to the accumulation of diterpenes within 3 days of infiltration and with a maximum at 5 days. Over 50% of the products were exported onto the leaf surface, thus considerably facilitating the analysis by reducing the complexity of the extracts. The robustness of the method was tested by expressing three different plant enzymes, cembratrien-ol synthase from Nicotiana sylvestris, casbene synthase from Ricinus communis and levopimaradiene synthase from Gingko biloba. Furthermore, co-expression of a 1-deoxy-D-xylulose-5-phosphate synthase from tomato and a geranylgeranyl diphosphate synthase from tobacco led to a 3.5-fold increase in the amount of cembratrien-ol produced, with maximum yields reaching 2500 ng/cm2.ConclusionWith this optimized method for diterpene synthase expression and product analysis, a single infiltrated leaf of N. benthamiana would be sufficient to produce quantities required for the structure elucidation of unknown diterpenes. The method will also be of general use for gene function discovery, pathway reconstitution and metabolic engineering of diterpenoid biosynthesis in plants.
Publications
BackgroundPhytohormones are the key metabolites participating in the regulation of multiple functions of plant organism. Among them, jasmonates, as well as abscisic and salicylic acids are responsible for triggering and modulating plant reactions targeted against pathogens and herbivores, as well as resistance to abiotic stress (drought, UV-irradiation and mechanical wounding). These factors induce dramatic changes in phytohormone biosynthesis and transport leading to rapid local and systemic stress responses. Understanding of underlying mechanisms is of principle interest for scientists working in various areas of plant biology. However, highly sensitive, precise and high-throughput methods for quantification of these phytohormones in small samples of plant tissues are still missing.ResultsHere we present an LC-MS/MS method for fast and highly sensitive determination of jasmonates, abscisic and salicylic acids. A single-step sample preparation procedure based on mixed-mode solid phase extraction was efficiently combined with essential improvements in mobile phase composition yielding higher efficiency of chromatographic separation and MS-sensitivity. This strategy resulted in dramatic increase in overall sensitivity, allowing successful determination of phytohormones in small (less than 50 mg of fresh weight) tissue samples. The method was completely validated in terms of analyte recovery, sensitivity, linearity and precision. Additionally, it was cross-validated with a well-established GC-MS-based procedure and its applicability to a variety of plant species and organs was verified.ConclusionThe method can be applied for the analyses of target phytohormones in small tissue samples obtained from any plant species and/or plant part relying on any commercially available (even less sensitive) tandem mass spectrometry instrumentation.
This page was last modified on 27 Jan 2025 .