Publications - Cell and Metabolic Biology
- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
Publications
Publications
This page was last modified on 27 Jan 2025 .
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Publications - Cell and Metabolic Biology
Publications
Precise annotation of time and spatial distribution of enzymes involved in plant secondary metabolism by gel electrophoresis are usually difficult due to their low abundance. Therefore, effective methods to enrich these enzymes are required to correlate available transcript and metabolite data with the actual presence of active enzymes in wild-type and mutant plants or to monitor variations of these enzymes under various types of biotic and abiotic stress conditions. S-Adenosyl-L-methionine-dependent O-methyltransferases play important roles in the modification of natural products such as phenylpropanoids or alkaloids. In plants they occur as small superfamilies with defined roles for each of its members in different organs and tissues. We explored the use of S-adenosyl-L-homocysteine as a selectivity function in affinity-based protein profiling supported by capture compound mass spectrometry. Due to their high affinity to this ligand it was possible to identify developmental changes of flower-specific patterns of plant natural product O-methyltransferases and corroborate the absence of individual O-methyltransferases in the corresponding Arabidopsis knockout lines. Developmental changes in the OMT pattern were correlated with transcript data obtained by qPCR.
Publications
0
Publications
Diadenosine 5′,5′”‐P1,P4‐tetraphosphate (Ap4A) cleaving enzymes are assumed to regulate intracellular levels of Ap4A, a compound known to affect cell proliferation and stress responses. From plants an Ap4A hydrolase was recently purified using tomato cells grown in suspension. It was partially sequenced and a peptide antibody was prepared (Feussner et al., 1996). Using this polyclonal monospecific antibody, an abundant nuclear location of Ap4A hydrolase in 4‐day‐old cells of atomato cell suspension culture is demonstrated here by means of immunocytochemical techniques using FITC (fluorescein‐5‐isothiocyanate) labeled secondary antibodies. The microscopic analysis of the occurrence of Ap4A hydrolase performed for different stages of the cell cycle visualized by parallel DAPI (4,6‐diamidino‐2‐phenylindole) staining revealed that the protein accumulates within nuclei of cells in the interphase, but is absent in the nucleus as well as cytoplasm during all stages of mitosis. This first intracellular localization of an Ap4A degrading enzyme within the nucleus and its pattern of appearance during the cell cycle is discussed in relation to the suggested role of Ap4A in triggering DNA synthesis and cell proliferation.
Publications
Changes in lipoxygenase (LOX) protein pattern and/or activity were investigated in relation to acquired resistance of cucumber (Cucumis sativus L.) leaves against two powdery mildews, Sphaerotheca fuliginea (Schlecht) Salmon and Erysiphe cichoracearum DC et Merat. Acquired resistance was established by spraying leaves with salicylic acid (SA) or 2,6‐dichloroisonicotinic acid (INA) and estimated in whole plants by infested leaf area compared to control plants. SA was more effective than INA. According to Western blots, untreated cucumber leaves contained a 97 kDa LOX form, which remained unchanged for up to 48 h after pathogen inoculation. Upon treatment with SA alone for 24 h or with INA plus pathogen, an additional 95 kDa LOX form appeared which had an isoelectric point in the alkaline range. For the induction of this form, a threshold concentration of 1 mM SA was required, higher SA concentrations did not change LOX‐95 expression which remained similar between 24 h and 96 h but further increased upon mildew inoculation. Phloem exudates contained only the LOX‐97 form, in intercellular washing fluid no LOX was detected. dichloroisonicotinic localization revealed LOX protein in the cytosol of the mesophyll cells without differences between the forms.
Publications
In our studies on tyrosinase-catalyzed tyrosine hydroxylation, possibly involved in betalain biosynthesis, we have evaluated different assays for the detection and quantification of the enzymatic product Dopa with respect to sensitivity, simplicity, and suitability for automatization. A tyrosinase assay including reversed-phase high-performance liquid chromatography with isocratic elution and fluorescence detection has been developed (native fluorescence of Dopa; excitation at 281 nm, emission at 314 nm). This improved assay was sensitive (detection limit: 2 pmol Dopa) and showed a wide linear range of Dopa detection (10 pmol–20 nmol Dopa). The method proved to be suitable for high-performance liquid chromatography with an autosampler and has been applied for measuring tyrosinase activity of cell cultures and different tissues ofPortulaca grandiflora.
Publications
The plant growth substance jasmonic acid and its methyl ester (JA‐Me) induce a set of proteins (jasmonate‐induced proteins, JIPs) when applied to leaf segments of barley (Hordeum vulgare L. cv. Salome). Most of these JIPs could be localized within different cell compartments by using a combination of biochemical and histochemical methods. Isolation and purification of various cell organelles of barley mesophyll cells, the separation of their proteins by one‐dimensional polyacrylamide gel electrophoresis and the identification of the major abundant JIPs by Western blot analysis, as well as the immuno‐gold labelling of JIPs in ultrathin sections were performed to localize JIPs intracellularly. JIP‐23 was found to be in vacuoles, peroxisomes, and in the granular parts of the nucleus as well as within the cytoplasm; JIP‐37 was detected in vacuoles and in the nucleoplasm; JIP‐66 is a cytosolic protein. Some less abundant JIPs were also localized within different cell compartments: JIP‐100 was found within the stromal fraction of chloroplasts; JIP‐70 is present in the peroxisome and the nucleus; JIP‐50 and JIP‐6 accumulate in vacuoles. The location of JIP‐66 and JIP‐6 confirms their possible physiological role deduced from molecular analysis of their cDNA.
This page was last modified on 27 Jan 2025 .