Publications - Cell and Metabolic Biology
- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
This page was last modified on 27 Jan 2025 .
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Publications - Cell and Metabolic Biology
Publications
Precise annotation of time and spatial distribution of enzymes involved in plant secondary metabolism by gel electrophoresis are usually difficult due to their low abundance. Therefore, effective methods to enrich these enzymes are required to correlate available transcript and metabolite data with the actual presence of active enzymes in wild-type and mutant plants or to monitor variations of these enzymes under various types of biotic and abiotic stress conditions. S-Adenosyl-L-methionine-dependent O-methyltransferases play important roles in the modification of natural products such as phenylpropanoids or alkaloids. In plants they occur as small superfamilies with defined roles for each of its members in different organs and tissues. We explored the use of S-adenosyl-L-homocysteine as a selectivity function in affinity-based protein profiling supported by capture compound mass spectrometry. Due to their high affinity to this ligand it was possible to identify developmental changes of flower-specific patterns of plant natural product O-methyltransferases and corroborate the absence of individual O-methyltransferases in the corresponding Arabidopsis knockout lines. Developmental changes in the OMT pattern were correlated with transcript data obtained by qPCR.
Publications
In addition to a previously characterized 13-lipoxygenase of 100 kDa encoded by LOX2:Hv:1 [Vörös et al., Eur. J. Biochem. 251 (1998), 36 44], two fulllength cDNAs (LOX2:Hv:2, LOX2:Hv:3) were isolated from barley leaves (Hordeum vulgare cv. Salome) and characterized. Both of them encode 13-lipoxygenases with putative target sequences for chloroplast import. Immunogold labeling revealed preferential, if not exclusive, localization of lipoxygenase proteins in the stroma. The ultrastructure of the chloroplast was dramatically altered following methyl jasmonate treatment, indicated by a loss of thylakoid membranes, decreased number of stacks and appearance of numerous osmiophilic globuli. The three 13-lipoxygenases are differentially expressed during treatment with jasmonate, salicylate, glucose or sorbitol. Metabolite profiling of free linolenic acid and free linoleic acid, the substrates of lipoxygenases, in water floated or jasmonatetreated leaves revealed preferential accumulation of linolenic acid. Remarkable amounts of free 9- as well as 13-hydroperoxy linolenic acid were found. In addition, metabolites of these hydroperoxides, such as the hydroxy derivatives and the respective aldehydes, appeared following methyl jasmonate treatment. These findings were substantiated by metabolite profiling of isolated chloroplasts, and subfractions including the envelope, the stroma and the thylakoids, indicating a preferential occurrence of lipoxygenasederived products in the stroma and in the envelope. These data revealed jasmonateinduced activation of the hydroperoxide lyase and reductase branch within the lipoxygenase pathway and suggest differential activity of the three 13-lipoxygenases under different stress conditions.
Publications
0
Publications
In our studies on tyrosinase-catalyzed tyrosine hydroxylation, possibly involved in betalain biosynthesis, we have evaluated different assays for the detection and quantification of the enzymatic product Dopa with respect to sensitivity, simplicity, and suitability for automatization. A tyrosinase assay including reversed-phase high-performance liquid chromatography with isocratic elution and fluorescence detection has been developed (native fluorescence of Dopa; excitation at 281 nm, emission at 314 nm). This improved assay was sensitive (detection limit: 2 pmol Dopa) and showed a wide linear range of Dopa detection (10 pmol–20 nmol Dopa). The method proved to be suitable for high-performance liquid chromatography with an autosampler and has been applied for measuring tyrosinase activity of cell cultures and different tissues ofPortulaca grandiflora.
This page was last modified on 27 Jan 2025 .