Publications - Cell and Metabolic Biology
- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
This page was last modified on 27 Jan 2025 .
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Publications - Cell and Metabolic Biology
Publications
In oilseed rape (Brassica napus), the glucosyltransferase UGT84A9 catalyzes the formation of 1-O-sinapoyl-β-glucose, which feeds as acyl donor into a broad range of accumulating sinapate esters, including the major antinutritive seed component sinapoylcholine (sinapine). Since down-regulation of UGT84A9 was highly efficient in decreasing the sinapate ester content, the genes encoding this enzyme were considered as potential targets for molecular breeding of low sinapine oilseed rape. B. napus harbors two distinguishable sequence types of the UGT84A9 gene designated as UGT84A9-1 and UGT84A9-2. UGT84A9-1 is the predominantly expressed variant, which is significantly up-regulated during the seed filling phase, when sinapate ester biosynthesis exhibits strongest activity. In the allotetraploid genome of B. napus, UGT84A9-1 is represented by two loci, one derived from the Brassica C-genome (UGT84A9a) and one from the Brassica A-genome (UGT84A9b). Likewise, for UGT84A9-2 two loci were identified in B. napus originating from both diploid ancestor genomes (UGT84A9c, Brassica C-genome; UGT84A9d, Brassica A-genome). The distinct UGT84A9 loci were genetically mapped to linkage groups N15 (UGT84A9a), N05 (UGT84A9b), N11 (UGT84A9c) and N01 (UGT84A9d). All four UGT84A9 genomic loci from B. napus display a remarkably low micro-collinearity with the homologous genomic region of Arabidopsis thaliana chromosome III, but exhibit a high density of transposon-derived sequence elements. Expression patterns indicate that the orthologous genes UGT84A9a and UGT84A9b should be considered for mutagenesis inactivation to introduce the low sinapine trait into oilseed rape.
Publications
Phenylpropanoid polyamine conjugates are widespread in plant species. Their presence has been established in seeds, flower buds, and pollen grains. A biosynthetic pathway proposed for hydroxycinnamoyl spermidine conjugates has been suggested for the model plant Arabidopsis thaliana with a central acyl transfer reaction performed by a BAHD-like hydroxycinnamoyl transferase. A detailed liquid chromatography (LC)–electrospray ionization–mass spectrometry- and tandem-mass-spectrometry (MS/MS)-based survey of wild-type and spermidine hydroxycinnamoyl transferase (SHT) mutants identified more than 30 different bis- and tris-substituted spermidine conjugates, five of which were glycosylated, in the methanol-soluble fraction of the pollen exine. On the basis of characterized fragmentation patterns, a high-throughput LC–MS/MS method for highly sensitive HCAA relative quantification (targeted profiling) was developed. Only minor qualitative and quantitative differences in the pattern of bis-acyl spermidine conjugates in the SHT mutant compared to wild-type plants provide strong evidence for the presence of multiple BAHD-like acyl transferases and suggest a much more complex array of enzymatic steps in the biosynthesis of these conjugates than previously anticipated.
Publications
Glycation (or non-enzymatic glycosylation) is a common non-enzymatic covalent modification of human proteins. Glucose, the highest concentrated monosaccharide in blood, can reversibly react with amino groups of proteins to form Schiff bases that can rearrange to form relatively stable Amadori products. These can be further oxidized to advanced glycation end products (AGEs). Here, we analyzed the glycation patterns of human serum albumin (HSA) in plasma samples obtained from five patients with type 2 diabetes mellitus. Therefore, glycated peptides from a tryptic digest of plasma were enriched with m-aminophenylboronic acid (mAPBA) affinity chromatography. The glycated peptides were then further separated in the second dimension by RP-HPLC coupled on-line to an electrospray ionization (ESI) tandem mass spectrometer (MS/MS). Altogether, 18 Amadori peptides, encompassing 40% of the HSA sequence, were identified. The majority of the peptides were detected and relatively quantified in all five samples with a high reproducibility among the replicas. Eleven Lys-residues were glycated at similar quantities in all samples, with glycation site Lys549 (KAm(Glc)QTALVELVK) being the most abundant. In conclusion, the established mAPBA/nanoRP-HPLC-ESI-MS/MS approach could reproducibly identify and quantify glycation sites in plasma samples, potentially useful in diagnosis and therapeutic control.
Publications
Resveratrol is a phytoalexin produced in various plants like wine, peanut or pine in response to fungal infection or UV irradiation, but it is absent in members of the Brassicaceae. Moreover, resveratrol and its glucoside (piceid) are considered to have beneficial effects on human health, known to reduce heart disease, arteriosclerosis and cancer mortality. Therefore, the introduction of the gene encoding stilbene synthase for resveratrol production in rapeseed is a tempting approach to improve the quality of rapeseed products. The stilbene synthase gene isolated from grapevine (Vitis vinifera L.) was cloned under control of the seed-specific napin promotor and introduced into rapeseed (Brassica napus L.) by Agrobacterium-mediated co-transformation together with a ds-RNA-interference construct deduced from the sequence of the key enzyme for sinapate ester biosynthesis, UDP-glucose:sinapate glucosyltransferase (BnSGT1), assuming that the suppression of the sinapate ester biosynthesis may increase the resveratrol production in seeds through the increased availability of the precursor 4-coumarate. Resveratrol glucoside (piceid) was produced at levels up to 361 μg/g in the seeds of the primary transformants. This value exceeded by far piceid amounts reported from B. napus expressing VST1 in the wild type sinapine background. There was no significant difference in other important agronomic traits, like oil, protein, fatty acid and glucosinolate content in comparison to the control plants. In the third seed generation, up to 616 μg/g piceid was found in the seeds of a homozygous T3-plant with a single transgene copy integrated. The sinapate ester content in this homozygous T3-plant was reduced from 7.43 to 2.40 mg/g. These results demonstrate how the creation of a novel metabolic sink could divert the synthesis towards the production of piceid rather than sinapate ester, thereby increasing the value of oilseed products.
This page was last modified on 27 Jan 2025 .