Publications - Cell and Metabolic Biology
- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
This page was last modified on 27 Jan 2025 .
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Publications - Cell and Metabolic Biology
Publications
The profile of 122 metabolites in the cerebrospinal fluid (CSF) of patients suffering from Alzheimer’s disease (AD) and controls was studied. Among the 122 metabolites analyzed, 61 could be detected. Statistically significant differences between the AD and control group were only detected for metabolites of the glycolysis. Thus, accurate quantification of 11 glycolytic metabolites was done. We detected a significant reduction of five of them, namely phosphoenolpyruvate, 2-phosphoglycerate, 3-phosphoglycerate, pyruvate and dihydroxyacetone phosphate in the AD CSF compared to controls. These results correlate with the known reduction of glucose metabolism in the brain of patients with AD and indicate that metabolic analysis of the central carbon metabolism can be a potential tool in AD diagnostic. Although the Receiver operating characteristic (ROC) analyses of the metabolites do not reach the level of the diagnostic informativity of AD biomarkers, the combination of specific glycolysis metabolites with the established biomarkers may lead to an improvement in sensitivity and specificity.
Publications
In addition to a previously characterized 13-lipoxygenase of 100 kDa encoded by LOX2:Hv:1 [Vörös et al., Eur. J. Biochem. 251 (1998), 36 44], two fulllength cDNAs (LOX2:Hv:2, LOX2:Hv:3) were isolated from barley leaves (Hordeum vulgare cv. Salome) and characterized. Both of them encode 13-lipoxygenases with putative target sequences for chloroplast import. Immunogold labeling revealed preferential, if not exclusive, localization of lipoxygenase proteins in the stroma. The ultrastructure of the chloroplast was dramatically altered following methyl jasmonate treatment, indicated by a loss of thylakoid membranes, decreased number of stacks and appearance of numerous osmiophilic globuli. The three 13-lipoxygenases are differentially expressed during treatment with jasmonate, salicylate, glucose or sorbitol. Metabolite profiling of free linolenic acid and free linoleic acid, the substrates of lipoxygenases, in water floated or jasmonatetreated leaves revealed preferential accumulation of linolenic acid. Remarkable amounts of free 9- as well as 13-hydroperoxy linolenic acid were found. In addition, metabolites of these hydroperoxides, such as the hydroxy derivatives and the respective aldehydes, appeared following methyl jasmonate treatment. These findings were substantiated by metabolite profiling of isolated chloroplasts, and subfractions including the envelope, the stroma and the thylakoids, indicating a preferential occurrence of lipoxygenasederived products in the stroma and in the envelope. These data revealed jasmonateinduced activation of the hydroperoxide lyase and reductase branch within the lipoxygenase pathway and suggest differential activity of the three 13-lipoxygenases under different stress conditions.
This page was last modified on 27 Jan 2025 .