Publications - Cell and Metabolic Biology
- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
This page was last modified on 27 Jan 2025 .
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Publications - Cell and Metabolic Biology
Publications
The profile of 122 metabolites in the cerebrospinal fluid (CSF) of patients suffering from Alzheimer’s disease (AD) and controls was studied. Among the 122 metabolites analyzed, 61 could be detected. Statistically significant differences between the AD and control group were only detected for metabolites of the glycolysis. Thus, accurate quantification of 11 glycolytic metabolites was done. We detected a significant reduction of five of them, namely phosphoenolpyruvate, 2-phosphoglycerate, 3-phosphoglycerate, pyruvate and dihydroxyacetone phosphate in the AD CSF compared to controls. These results correlate with the known reduction of glucose metabolism in the brain of patients with AD and indicate that metabolic analysis of the central carbon metabolism can be a potential tool in AD diagnostic. Although the Receiver operating characteristic (ROC) analyses of the metabolites do not reach the level of the diagnostic informativity of AD biomarkers, the combination of specific glycolysis metabolites with the established biomarkers may lead to an improvement in sensitivity and specificity.
Publications
The pigments of Opuntia ficus‐indica fruits, which are derived from the betalain rather than anthocyanin pathway, have an extraordinary range in colour from lime green, orange, red to purple. This is a result from varying concentrations and proportions of about half a dozen betaxanthins and betacyanins. The yellow‐orange betaxanthins are derived from spontaneous condensation of betalamic acid with amines or amino acids. The reddish‐purple betacyanins are enzymatically formed from betalamic acid and cyclo ‐dihydroxyphenylalanine (DOPA) yielding betanidin and further glycosylated on either of the two hydroxyls of the cyclo ‐DOPA moiety. In the present work, degenerated primers were used to obtain partial genomic sequences of two major genes in the biosynthetic pathway for betalains, that is the 4,5‐extradiol dioxygenase which forms the betalamic acid responsible for the yellow colour and a putative 5‐O ‐glucosyltransferase which glycosylates betanidin in Dorotheanthus bellidiformis and may be responsible for the red colour. Differences in the genomic DNA between coloured versus non‐coloured varieties were not found. Regulatory mechanisms seem to independently control pigmentation of O. ficus‐indica fruit tissues for inner core, peel and epidermis. Core pigmentation occurs first and well before fruit maturity and peel pigmentation. Peel pigmentation is fully developed at maturity, presumably related to maximum soluble solids. Epidermal pigmentation appears to be independent of core and peel pigmentation, perhaps because of light stimulation. Similar control mechanisms exist through transcription factors for the major enzyme regulating anthocyanin production in grapes.
This page was last modified on 27 Jan 2025 .