Publications - Cell and Metabolic Biology
- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Books and chapters
Books and chapters
Books and chapters
Books and chapters
This page was last modified on 27 Jan 2025 .
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Publications - Cell and Metabolic Biology
Books and chapters
This chapter presents an overview about the immunocytochemical techniques using in the model legume Medicago truncatula. After a short introduction into the basics of immunocytochemistry, detailed protocols that can be used to perform immunolabelling on light, confocal and electron microscopical level are listed. These protocols are successfully applied in the author’s laboratories to obtain information about the localization of various proteins in a range of tissues from Medicago truncatula. Depending on facilities to perform sectioning and the microscopical equipment, modifications might be required to suit individual demands. Therefore, please use these protocols as a starting point and adjust them after consulting experienced personnel at your local facilities.
Books and chapters
In arbuscular mycorrhizal symbioses, root cortical cell plastids catalyze central processes regarding the transported metabolites on the one hand and molecular building blocks for symbiotic structures on the other. These metabolic tasks correlate with a strong proliferation and structural changes of the organelles. Future work will address the molecular factors responsible for these metabolic and structural changes.
Books and chapters
IntroductionA Summary of Bioactive Glycosylated Secondary MetabolitesAgents that Interact with DNAEnediynesBleomycinsDiazobenzofluorenesAnthracyclinesPluramycinsAureolic AcidsAgents that Interact with RNAOrthosomycinsMacrolidesAminoglycosidesAmicetinsAgents that Interact with Cell Walls and Cell MembranesNon‐Ribosomal PeptidesPolyenesSaccharomicinsAgents that Interact with ProteinsIndolocarbazolesCoumarinsBenzoisochromanequinonesAvermectinsAngucyclinesCardiac GlycosidesLignansAnthraquinone GlycosidesGinsenosidesGlycoalkaloidsGlucosinolatesAgents that Interact with Other (or Undefined) TargetsPlant PhenolicsMono‐ and Triterpenoid GlycosidesPlant Polymeric Natural GlycosidesConclusionsReferences
Books and chapters
Mycorrhizas are by far the most frequent occurring beneficial symbiotic interactions between plants and fungi. Species in >80% of extant plant families are capable of establishing an arbuscular mycorrhiza (AM). In relation to the development of the symbiosis the first molecular modifications are those associated with plant defense responses, which seem to be locally suppressed to levels compatible with symbiotic interaction (Gianinazzi-Pearson, 1996). AM symbiosis can, however, reduce root disease caused by several soil-borne pathogens. The mechanisms underlying this protective effect are still not well understood. In plants, products of the enzyme lipoxygenase (LOX) and the corresponding downstream enzymes, collectively named LOX pathway (Fig. 1B), are involved in wound healing, pest resistance, and signaling, or they have antimicrobial and antifungal activity (Feussner and Wasternack, 2002). The central reaction in this pathway is catalyzed by LOXs leading to formation of either 9- or 13-hydroperoxy octadeca(di/trien)oic acids (9/13-HPO(D/T); Brash, 1999). Thus LOXs may be divided into 9- and 13-LOXs (Fig. 1A). Seven different reaction branches within this pathway can use these hydroperoxy polyenoic fatty acids (PUFAs) leading to (i) keto PUFAs by a LOX; (ii) epoxy hydroxy-fatty acids by an epoxy alcohol synthase (EAS); (iii) octadecanoids and jasmonates via allene oxide synthase (AOS); (iv) leaf aldehydes and leaf alcohols via fatty acid hydroperoxide lyase (HPL); (v) hydroxy PUFAs (reductase); (vi) divinyl ether PUFAs via divinyl ether synthase (DES); and (vii) epoxy- or dihydrodiolPUFAs via peroxygenase (PDX; Feussner and Wasternack, 2002). AOS, HPL and DES belong to one subfamily of P450-containing enzymes, the CYP74 family (Feussner and Wasternack, 2002). Here, the involvement of this CYP74 enzyme family in mycorrhizal roots of M. truncatula during early stages of AM symbiosis formation was analyzed.
Books and chapters
Jasmonic acid (JA) and its precursor 12-oxo phytodienoic acid (OPDA) are lipid-derived signals in plant stress responses and development (Wasternack and Hause, 2002). Within the wound-response pathway of tomato, a local response of expression of defense genes such as the proteinase inhibitor 2 gene (PIN2) is preceded by a rise in JA (Herde et al., 1996; Howe et al., 1996) and ethylene (O’Donnell et al., 1996). Mutants affected in JA biosynthesis such as defl (Howe et al., 1996) or spr-2 (Li et al., 2002) clearly indicated that JA biosynthesis is an ultimate part of wound signaling. It is less understood, however, how the rise in JA is regulated.
This page was last modified on 27 Jan 2025 .