Publications - Cell and Metabolic Biology
- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
This page was last modified on 27 Jan 2025 .
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Publications - Cell and Metabolic Biology
Publications
BackgroundJasmonates are well known plant signaling components required for stress responses and development. A prominent feature of jasmonate biosynthesis or signaling mutants is the loss of fertility. In contrast to the male sterile phenotype of Arabidopsis mutants, the tomato mutant jai1-1 exhibits female sterility with additional severe effects on stamen and pollen development. Its senescence phenotype suggests a function of jasmonates in regulation of processes known to be mediated by ethylene. To test the hypothesis that ethylene involved in tomato stamen development is regulated by jasmonates, a temporal profiling of hormone content, transcriptome and metabolome of tomato stamens was performed using wild type and jai1-1.ResultsWild type stamens showed a transient increase of jasmonates that is absent in jai1-1. Comparative transcriptome analyses revealed a diminished expression of genes involved in pollen nutrition at early developmental stages of jai1-1 stamens, but an enhanced expression of ethylene-related genes at late developmental stages. This finding coincides with an early increase of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) in jai1-1 and a premature pollen release from stamens, a phenotype similarly visible in an ethylene overproducing mutant. Application of jasmonates to flowers of transgenic plants affected in jasmonate biosynthesis diminished expression of ethylene-related genes, whereas the double mutant jai1-1 NeverRipe (ethylene insensitive) showed a complementation of jai1-1 phenotype in terms of dehiscence and pollen release.ConclusionsOur data suggest an essential role of jasmonates in the temporal inhibition of ethylene production to prevent premature desiccation of stamens and to ensure proper timing in flower development.
Publications
Among the plant hormones jasmonic acid and related derivatives are known to mediate stress responses and several developmental processes. Biosynthesis, regulation, and metabolism of jasmonic acid in Arabidopsis thaliana are reviewed, including properties of mutants of jasmonate biosynthesis. The individual signalling properties of several jasmonates are described.
Publications
Transport processes between plant and fungal cells are key elements in arbuscular mycorrhiza (AM), where H+‐ATPases are considered to be involved in active uptake of nutrients from the symbiotic interface. Genes encoding H+‐ATPases were identified in the genome of Medicago truncatula and three cDNA fragments of the H+‐ATPase gene family (Mtha 1 ‐ 3) were obtained by RT‐PCR using RNA from M. truncatula mycorrhizal roots as template. While Mtha 2 and Mtha 3 appeared to be constitutively expressed in roots and unaffected by AM development, transcripts of Mtha 1 could only be detected in AM tissues and not in controls. Further analyses by RT‐PCR revealed that Mtha 1 transcripts are not detectable in shoots and phosphate availability did not affect RNA accumulation of the gene. Localization of transcripts by in situ hybridization on AM tissues showed that Mtha 1 RNA accumulates only in cells containing fungal arbuscules. This is the first report of arbuscule‐specific induced expression of a plant H+‐ATPase gene in mycorrhizal tissues.
Publications
Treatment of barley leaf segments with jasmonic acid methyl ester (JM) leads to the accumulation of a set of newly formed abundant proteins. Among them, the most abun dant protein exhibits a molecular mass of 23 kDa (JIP‐23). Here, data are presented on the occurrence and expression of the lIP‐23 genes in different cultivars of Hordeum vulgare . Southern blot analysis of 80 cultivars revealed the occurrence of 2 to 4 genes coding for JIP‐23 in all cultivars. By means of Northern blot and immunoblot analysis it is shown that some cultivars lack the ex pression of jip‐23 upon treatment of primary leaves with JM as well as upon stress performed by incubation with 1 M sorbitol solution. During germination, however, all tested cultivars ex hibited developmental expression of jip‐23 . The results are dis cussed in terms of possible functions of JIP‐23 in barley.
This page was last modified on 27 Jan 2025 .