Publications - Cell and Metabolic Biology
- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
This page was last modified on 27 Jan 2025 .
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Publications - Cell and Metabolic Biology
Publications
In contrast to animal lectins, no evidence has indicated the occurrence of plant lectins, which recognize and bind “endogenous” receptors and accordingly are involved in recognition mechanisms within the organism itself. Here we show that the plant hormone jasmonic acid methyl ester (JAME) induces in leaves of Nicotiana tabacum (var. Samsun NN) the expression of a lectin that is absent from untreated plants. The lectin specifically binds to oligomers of N‐acetylglucosamine and is detected exclusively in the cytoplasm and the nucleus. Both the subcellular location and specificity indicate that the Nicotiana tabacum agglutinin (called Nictaba) may be involved in the regulation of gene expression in stressed plants through specific protein‐carbohydrate interactions with regulatory cytoplasmic/nuclear glycoproteins. Searches in the databases revealed that many flowering plants contain sequences encoding putative homologues of the tobacco lectin, which suggest that Nictaba is the prototype of a widespread or possibly ubiquitous family of lectins with a specific endogenous role.
Publications
Heterologous screening of a cDNA library from Pinus strobus seedlings identified clones for two chalcone synthase (CHS) related proteins (PStrCHS1 and PStrCHS2, 87.6% identity). Heterologous expression in Escherichia coli showed that PStrCHS1 performed the typical CHS reaction, that it used starter CoA-esters from the phenylpropanoid pathway, and that it performed three condensation reactions with malonyl-CoA, followed by the ring closure to the chalcone. PstrCHS2 was completely inactive with these starters and also with linear CoA-esters. Activity was detected only with a diketide derivative (N-acetylcysteamine thioester of 3-oxo-5-phenylpent-4-enoic acid) that corresponded to the CHS reaction intermediate postulated after the first condensation reaction. PstrCHS2 performed only one condensation, with 6-styryl-4-hydroxy-2-pyrone derivatives as release products. The enzyme preferred methylmalonyl-CoA against malonyl-CoA, if only methylmalonyl-CoA was available. These properties and a comparison with the CHS from Pinussylvestris suggested for PstrCHS2 a special function in the biosynthesis of secondary products. In contrast to P. sylvestris, P. strobus contains C-methylated chalcone derivatives, and the methyl group is at the position predicted from a chain extension with methylmalonyl-CoA in the second condensation of the biosynthetic reaction sequence. We propose that PstrCHS2 specifically contributes the condensing reaction with methylmalonyl-CoA to yield a methylated triketide intermediate. We discuss a model that the biosynthesis of C-methylated chalcones represents the simplest example of a modular polyketide synthase.
This page was last modified on 27 Jan 2025 .