Publications - Cell and Metabolic Biology
- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
This page was last modified on 27 Jan 2025 .
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Publications - Cell and Metabolic Biology
Publications
Plant specialized metabolites are often synthesized and stored in dedicated morphological structures such as glandular trichomes, resin ducts, or laticifers where they accumulate in large concentrations. How this high productivity is achieved is still elusive, in particular, with respect to the interface between primary and specialized metabolism. Here, we focus on glandular trichomes to survey recent progress in understanding how plant metabolic cell factories manage to balance homeostasis of essential central metabolites while producing large quantities of compounds that constitute a metabolic sink. In particular, we review the role of gene duplications, transcription factors and photosynthesis.
Publications
Plants have a remarkable capacity for the production of a wide range of metabolites. Much has been reported and reviewed on the diversity of these metabolites and how it is achieved, for example through the evolution of enzyme families. In comparison, relatively little is known on the extraordinary metabolic productivity of dedicated organs where many of these metabolites are synthesized and accumulate. Plant glandular trichomes are such specialized metabolite factories, for which recent omics analyses have shed new light on the adaptive metabolic strategies that support high metabolic fluxes. In photosynthetic trichomes such as those of the Solanaceae, these include CO2 refixation and possibly C4-like metabolism which contribute to the high productivity of these sink organs.
This page was last modified on 27 Jan 2025 .