Publications - Cell and Metabolic Biology
- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
Publications
Publications
Publications
This page was last modified on 27 Jan 2025 .
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Publications - Cell and Metabolic Biology
Publications
For the first time in 25 years, a new pathway for biosynthesis of jasmonic acid (JA) has been identified. JA production takes place via 12-oxo-phytodienoic acid (OPDA) including reduction by OPDA reductases (OPRs). A loss-of-function allele, opr3-3, revealed an OPR3-independent pathway converting OPDA to JA.
Publications
Research on mycorrhizal interactions has traditionally developed into separate disciplines addressing different organizational levels. This separation has led to an incomplete understanding of mycorrhizal functioning. Integration of mycorrhiza research at different scales is needed to understand the mechanisms underlying the context dependency of mycorrhizal associations, and to use mycorrhizae for solving environmental issues. Here, we provide a road map for the integration of mycorrhiza research into a unique framework that spans genes to ecosystems. Using two key topics, we identify parallels in mycorrhiza research at different organizational levels. Based on two current projects, we show how scientific integration creates synergies, and discuss future directions. Only by overcoming disciplinary boundaries, we will achieve a more comprehensive understanding of the functioning of mycorrhizal associations.
Publications
Plant glandular trichomes are able to secrete and store large amounts of volatile organic compounds (VOCs). VOCs typically accumulate in dedicated extracellular spaces, which can be either subcuticular, as in the Lamiaceae or Asteraceae, or intercellular, as in the Solanaceae. Volatiles are retained at high concentrations in these storage cavities with limited release into the atmosphere and without re-entering the secretory cells, where they would be toxic. This implies the existence of mechanisms allowing transport of VOCs to the cavity but preventing their diffusion out once they have been delivered. The cuticle and cell wall lining the cavity are likely to have key roles in retaining volatiles, but their exact composition and the potential molecular players involved are largely unknown.
Publications
The male gametophyte of higher plants appears as a solid box containing the essentials to transmit genetic material to the next generation. These consist of haploid generative cells that are required for reproduction, and an invasive vegetative cell producing the pollen tube, both mechanically protected by a rigid polymer, the pollen wall, and surrounded by a hydrophobic pollen coat. This coat mediates the direct contact to the biotic and abiotic environments. It contains a mixture of compounds required not only for fertilization but also for protection against biotic and abiotic stressors. Among its metabolites, the structural characteristics of two types of phenylpropanoids, hydroxycinnamic acid amides and flavonol glycosides, are highly conserved in Angiosperm pollen. Structural and functional aspects of these compounds will be discussed.
Publications
The importance of phytohormone balance is increasingly recognized as central to the outcome of plant–pathogen interactions. Next to their well-known developmental role, brassinosteroids (BR) were recently found to be involved in plant innate immunity. In this study, we examined the role of BR in rice (Oryza sativa) innate immunity during infection with the root-knot nematode Meloidogyne graminicola, and we studied the inter-relationship with the jasmonate (JA) pathway. Exogenous epibrassinolide (BL) supply at low concentrations induced susceptibility in the roots whereas high concentrations of BL enforced systemic defense against this nematode. Upon high exogenous BL supply on the shoot, quantitative reverse-transcription polymerase chain reaction (qRT-PCR) confirmed a strong feedback inhibitory effect, leading to reduced BR biosynthesis in the root. Moreover, we demonstrate that the immune suppressive effect of BR is at least partly due to negative cross-talk with the JA pathway. Mutants in the BR biosynthesis or signaling pathway accumulate slightly higher levels of the immediate JA-precursor 12-oxo-phytodienoic acid, and qRT-PCR data showed that the BR and JA pathway are mutually antagonistic in rice roots. Collectively, these results suggest that the balance between the BR and JA pathway is an effective regulator of the outcome of the rice–M. graminicola interaction.
Publications
The nodule-specific MtNOD25 gene of the model legume Medicago truncatula encodes a modular nodulin composed of different repetitive modules flanked by distinct N- and C-termini. Although similarities are low with respect to all repetitive modules, both the N-terminal signal peptide (SP) and the C-terminus are highly conserved in modular nodulins from different legumes. On the cellular level, MtNOD25 is only transcribed in the infected cells of root nodules, and this activation is mediated by a 299-bp minimal promoter containing an organ-specific element. By expressing mGFP6 translational fusions in transgenic nodules, we show that MtNOD25 proteins are exclusively translocated to the symbiosomes of infected cells. This specific targeting only requires an N-terminal MtNOD25 SP that is highly conserved across a family of legume-specific symbiosome proteins. Our finding sheds light on one possible mechanism for the delivery of host proteins to the symbiosomes of infected root nodule cells and, in addition, defines a short molecular address label of only 24 amino acids whose N-terminal presence is sufficient to translocate proteins across the peribacteroid membrane.
Publications
Glycosyltransferases of plant secondary metabolism transfer nucleotide-diphosphate-activated sugars to low molecular weight substrates. Until recently, glycosyltransferases were thought to have only limited influence on the basic physiology of the plant. This view has changed. Glycosyltransferases might in fact have an important role in plant defense and stress tolerance. Recent results obtained with several recombinant enzymes indicate that many glycosyltransferases are regioselective or regiospecific rather than highly substrate specific. This might indicate how plants evolve novel secondary products, placing enzymes with broad substrate specificities downstream of the conserved, early, pivotal enzymes of plant secondary metabolism.
This page was last modified on 27 Jan 2025 .