Publications - Cell and Metabolic Biology
- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
This page was last modified on 27 Jan 2025 .
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Publications - Cell and Metabolic Biology
Publications
Genetic resources for the model plant Arabidopsis comprise mutant lines defective in almost any single gene in reference accession Columbia. However, gene redundancy and/or close linkage often render it extremely laborious or even impossible to isolate a desired line lacking a specific function or set of genes from segregating populations. Therefore, we here evaluated strategies and efficiencies for the inactivation of multiple genes by Cas9-based nucleases and multiplexing. In first attempts, we succeeded in isolating a mutant line carrying a 70 kb deletion, which occurred at a frequency of ~ 1.6% in the T2 generation, through PCR-based screening of numerous individuals. However, we failed to isolate a line lacking Lhcb1 genes, which are present in five copies organized at two loci in the Arabidopsis genome. To improve efficiency of our Cas9-based nuclease system, regulatory sequences controlling Cas9 expression levels and timing were systematically compared. Indeed, use of DD45 and RPS5a promoters improved efficiency of our genome editing system by approximately 25–30-fold in comparison to the previous ubiquitin promoter. Using an optimized genome editing system with RPS5a promoter-driven Cas9, putatively quintuple mutant lines lacking detectable amounts of Lhcb1 protein represented approximately 30% of T1 transformants. These results show how improved genome editing systems facilitate the isolation of complex mutant alleles, previously considered impossible to generate, at high frequency even in a single (T1) generation.
Publications
In plant secondary metabolism, β‐acetal ester‐dependent acyltransferases, such as the 1‐O ‐sinapoyl‐β‐glucose:l ‐malate sinapoyltransferase (SMT; EC 2.3.1.92), are homologous to serine carboxypeptidases. Mutant analyses and modeling of Arabidopsis SMT (AtSMT) have predicted amino acid residues involved in substrate recognition and catalysis, confirming the main functional elements conserved within the serine carboxypeptidase protein family. However, the functional shift from hydrolytic to acyltransferase activity and structure–function relationship of AtSMT remain obscure. To address these questions, a heterologous expression system for AtSMT has been developed that relies on Saccharomyces cerevisiae and an episomal leu2‐d vector. Codon usage adaptation of AtSMT cDNA raised the produced SMT activity by a factor of approximately three. N‐terminal fusion to the leader peptide from yeast proteinase A and transfer of this expression cassette to a high copy vector led to further increase in SMT expression by factors of 12 and 42, respectively. Finally, upscaling the biomass production by fermenter cultivation lead to another 90‐fold increase, resulting in an overall 3900‐fold activity compared to the AtSMT cDNA of plant origin. Detailed kinetic analyses of the recombinant protein indicated a random sequential bi‐bi mechanism for the SMT‐catalyzed transacylation, in contrast to a double displacement (ping‐pong) mechanism, characteristic of serine carboxypeptidases.
This page was last modified on 27 Jan 2025 .