Publications - Cell and Metabolic Biology
- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
Publications
Publications
Publications
This page was last modified on 27 Jan 2025 .
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Publications - Cell and Metabolic Biology
Publications
For the first time in 25 years, a new pathway for biosynthesis of jasmonic acid (JA) has been identified. JA production takes place via 12-oxo-phytodienoic acid (OPDA) including reduction by OPDA reductases (OPRs). A loss-of-function allele, opr3-3, revealed an OPR3-independent pathway converting OPDA to JA.
Publications
Research on mycorrhizal interactions has traditionally developed into separate disciplines addressing different organizational levels. This separation has led to an incomplete understanding of mycorrhizal functioning. Integration of mycorrhiza research at different scales is needed to understand the mechanisms underlying the context dependency of mycorrhizal associations, and to use mycorrhizae for solving environmental issues. Here, we provide a road map for the integration of mycorrhiza research into a unique framework that spans genes to ecosystems. Using two key topics, we identify parallels in mycorrhiza research at different organizational levels. Based on two current projects, we show how scientific integration creates synergies, and discuss future directions. Only by overcoming disciplinary boundaries, we will achieve a more comprehensive understanding of the functioning of mycorrhizal associations.
Publications
Plant glandular trichomes are able to secrete and store large amounts of volatile organic compounds (VOCs). VOCs typically accumulate in dedicated extracellular spaces, which can be either subcuticular, as in the Lamiaceae or Asteraceae, or intercellular, as in the Solanaceae. Volatiles are retained at high concentrations in these storage cavities with limited release into the atmosphere and without re-entering the secretory cells, where they would be toxic. This implies the existence of mechanisms allowing transport of VOCs to the cavity but preventing their diffusion out once they have been delivered. The cuticle and cell wall lining the cavity are likely to have key roles in retaining volatiles, but their exact composition and the potential molecular players involved are largely unknown.
Publications
The male gametophyte of higher plants appears as a solid box containing the essentials to transmit genetic material to the next generation. These consist of haploid generative cells that are required for reproduction, and an invasive vegetative cell producing the pollen tube, both mechanically protected by a rigid polymer, the pollen wall, and surrounded by a hydrophobic pollen coat. This coat mediates the direct contact to the biotic and abiotic environments. It contains a mixture of compounds required not only for fertilization but also for protection against biotic and abiotic stressors. Among its metabolites, the structural characteristics of two types of phenylpropanoids, hydroxycinnamic acid amides and flavonol glycosides, are highly conserved in Angiosperm pollen. Structural and functional aspects of these compounds will be discussed.
Publications
Phenylpropanoid polyamine conjugates are widespread in plant species. Their presence has been established in seeds, flower buds, and pollen grains. A biosynthetic pathway proposed for hydroxycinnamoyl spermidine conjugates has been suggested for the model plant Arabidopsis thaliana with a central acyl transfer reaction performed by a BAHD-like hydroxycinnamoyl transferase. A detailed liquid chromatography (LC)–electrospray ionization–mass spectrometry- and tandem-mass-spectrometry (MS/MS)-based survey of wild-type and spermidine hydroxycinnamoyl transferase (SHT) mutants identified more than 30 different bis- and tris-substituted spermidine conjugates, five of which were glycosylated, in the methanol-soluble fraction of the pollen exine. On the basis of characterized fragmentation patterns, a high-throughput LC–MS/MS method for highly sensitive HCAA relative quantification (targeted profiling) was developed. Only minor qualitative and quantitative differences in the pattern of bis-acyl spermidine conjugates in the SHT mutant compared to wild-type plants provide strong evidence for the presence of multiple BAHD-like acyl transferases and suggest a much more complex array of enzymatic steps in the biosynthesis of these conjugates than previously anticipated.
Publications
Glycation (or non-enzymatic glycosylation) is a common non-enzymatic covalent modification of human proteins. Glucose, the highest concentrated monosaccharide in blood, can reversibly react with amino groups of proteins to form Schiff bases that can rearrange to form relatively stable Amadori products. These can be further oxidized to advanced glycation end products (AGEs). Here, we analyzed the glycation patterns of human serum albumin (HSA) in plasma samples obtained from five patients with type 2 diabetes mellitus. Therefore, glycated peptides from a tryptic digest of plasma were enriched with m-aminophenylboronic acid (mAPBA) affinity chromatography. The glycated peptides were then further separated in the second dimension by RP-HPLC coupled on-line to an electrospray ionization (ESI) tandem mass spectrometer (MS/MS). Altogether, 18 Amadori peptides, encompassing 40% of the HSA sequence, were identified. The majority of the peptides were detected and relatively quantified in all five samples with a high reproducibility among the replicas. Eleven Lys-residues were glycated at similar quantities in all samples, with glycation site Lys549 (KAm(Glc)QTALVELVK) being the most abundant. In conclusion, the established mAPBA/nanoRP-HPLC-ESI-MS/MS approach could reproducibly identify and quantify glycation sites in plasma samples, potentially useful in diagnosis and therapeutic control.
Publications
Glycosyltransferases of plant secondary metabolism transfer nucleotide-diphosphate-activated sugars to low molecular weight substrates. Until recently, glycosyltransferases were thought to have only limited influence on the basic physiology of the plant. This view has changed. Glycosyltransferases might in fact have an important role in plant defense and stress tolerance. Recent results obtained with several recombinant enzymes indicate that many glycosyltransferases are regioselective or regiospecific rather than highly substrate specific. This might indicate how plants evolve novel secondary products, placing enzymes with broad substrate specificities downstream of the conserved, early, pivotal enzymes of plant secondary metabolism.
This page was last modified on 27 Jan 2025 .