Publications - Cell and Metabolic Biology
- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
This page was last modified on 27 Jan 2025 .
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Publications - Cell and Metabolic Biology
Publications
Sesquiterpene lactones (STLs) are bitter tasting plant specialized metabolites derived from farnesyl pyrophosphate (FPP) that contain a characteristic lactone ring. STLs can be found in many plant families that are distantly related to each other and outside the plant kingdom. They are especially prevalent in the plant families Apiaceae and Asteraceae, the latter being one of the largest plant families besides the Orchidaceae. The STL diversity is especially large in the Asteraceae, which made them an ideal object for chemosystematic studies in these species. Many STLs show a high bioactivity, for example as protective compounds against herbivory. STLs are also relevant for pharmaceutical applications, such as the treatment of malaria with artemisinin. Recent findings have dramatically changed our knowledge about the biosynthesis of STLs, as well as their developmental, spatial, and environmental regulation. This review intents to update the currently achieved progress in these aspects. With the advancement of genome editing tools such as CRISPR/Cas and the rapid acceleration of the speed of genome sequencing, even deeper insights into the biosynthesis, regulation, and enzyme evolution of STL can be expected in the future. Apart from their role as protective compounds, there may be a more subtle role of STL in regulatory processes of plants that will be discussed as well.
Publications
Mycorrhizas are the most important mutualistic symbioses on earth. The most prevalent type are the arbuscular mycorrhizas (AMs) that develop between roots of most terrestrial plants and fungal species of the Zygomycota. The AM fungi are able to grow into the root cortex forming intercellular hyphae from which highly branched structures, arbuscules, originate within cortex cells. The arbuscules are responsible for nutrient exchange between the host and the symbiont, transporting carbohydrates from the plant to the fungus and mineral nutrients, especially phosphate, and water from the fungus to the plant. Plants adapt their phosphate uptake to the interaction with the AM fungus by synthesis of specific phosphate transporters. Colonization of root cells induces dramatic changes in the cytoplasmic organization: vacuole fragmentation, transformation of the plasma membrane to a periarbuscular membrane covering the arbuscule, increase of the cytoplasm volume and numbers of cell organelles, as well as movement of the nucleus into a central position. The plastids form a dense network covering the symbiotic interface. In some of these changes, microtubules are most likely involved. With regard to the molecular crosstalk between the two organisms, a number of phytohormones (cytokinins, abscisic acid, jasmonate) as well as various secondary metabolites have been examined: (i) Jasmonates occur at elevated level, which is accompanied by cell-specific expression of genes involved in jasmonate biosynthesis that might be linked to strong carbohydrate sink function of AM roots and induced defense reactions; (ii) apocarotenoids (derivatives of mycorradicin and glycosylated cyclohexenones) accumulate in most mycorrhizal roots examined so far. Their biosynthesis via the nonmevalonate methylerythritol phosphate (MEP) pathway has been studied resulting in new insights into AM-specific gene expression and biosynthesis of secondary isoprenoids.
This page was last modified on 27 Jan 2025 .