Publications - Cell and Metabolic Biology
- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
Publications
Publications
This page was last modified on 27 Jan 2025 .
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Publications - Cell and Metabolic Biology
Publications
Diterpenoids form a diverse group of natural products, many of which are or could become pharmaceuticals or industrial chemicals. The modular character of diterpene biosynthesis and the promiscuity of the enzymes involved make combinatorial biosynthesis a promising approach to generate libraries of diverse diterpenoids. Here, we report on the combinatorial assembly in yeast of ten diterpene synthases producing (+)-copalyldiphosphate-derived backbones and four cytochrome P450 oxygenases (CYPs) in diverse combinations. This resulted in the production of over 200 diterpenoids. Based on literature and chemical database searches, 162 of these compounds can be considered new-to-Nature. The CYPs accepted most substrates they were given but remained regioselective with few exceptions. Our results provide the basis for the systematic exploration of the diterpenoid chemical space in yeast using sequence databases.
Publications
The pyrethrum plant, Tanacetum cinerariifolium (Asteraceae) synthesizes a class of compounds called pyrethrins that have strong insecticidal properties but are safe to humans. Class I pyrethrins are esters of the monoterpenoid trans-chrysanthemic acid with one of three jasmonic-acid derived alcohols. We reconstructed the trans-chrysanthemic acid biosynthetic pathway in tomato fruits, which naturally produce high levels of the tetraterpene pigment lycopene, an isoprenoid which shares a common precursor, dimethylallyl diphosphate (DMAPP), with trans-chrysanthemic acid. trans-Chrysanthemic acid biosynthesis in tomato fruit was achieved by expressing the chrysanthemyl diphosphate synthase gene from T. cinerariifolium, encoding the enzyme that uses DMAPP to make trans-chrysanthemol, under the control of the fruit specific promoter PG, as well as an alcohol dehydrogenease (ADH) gene and aldehyde dehydrogenase (ALDH) gene from a wild tomato species, also under the control of the PG promoter. Tomato fruits expressing all three genes had a concentration of trans-chrysanthemic acid that was about 1.7-fold higher (by weight) than the levels of lycopene present in non-transgenic fruit, while the level of lycopene in the transgenic plants was reduced by 68%. Ninety seven percent of the diverted DMAPP was converted to trans-chrysanthemic acid, but 62% of this acid was further glycosylated. We conclude that the tomato fruit is an alternative platform for the biosynthesis of trans-chrysanthemic acid by metabolic engineering.
Publications
Expression takes place for most of the jasmonic acid (JA)-induced genes in a COI1-dependent manner via perception of its conjugate JA-Ile in the SCFCOI1-JAZ co-receptor complex. There are, however, numerous genes and processes, which are preferentially induced COI1-independently by the precursor of JA, 12-oxo-phytodienoic acid (OPDA). After recent identification of the Ile-conjugate of OPDA, OPDA-Ile, biological activity of this compound could be unequivocally proven in terms of gene expression. Any interference of OPDA, JA, or JA-Ile in OPDA-Ile-induced gene expression could be excluded by using different genetic background. The data suggest individual signaling properties of OPDA-Ile. Future studies for analysis of an SCFCOI1-JAZ co-receptor-independent route of signaling are proposed.
Publications
Jasmonates (JAs) are ubiquitously occurring signaling compounds in plants formed in response to biotic and abiotic stress as well as in development. (+)-7-iso-jasmonoyl isoleucine, the bioactive JA, is involved in most JA-dependent processes mediated by the F-box protein COI1 in a proteasome-dependent manner. However, there is an increasing number of examples, where the precursor of JA biosynthesis, cis-(+)-12-oxophytodienoic acid (OPDA) is active in a JA/COI1-independent manner. Here, we discuss those OPDA-dependent processes, thereby giving emphasis on tomato embryo development. Recent data on seed coat-generated OPDA and its role in embryo development is discussed based on biochemical and genetic evidences.
Publications
Oxidative tailoring of C40 carotenoids by double bond-specific cleavage enzymes (carotenoid cleavage dioxygenases, CCDs) gives rise to various apocarotenoids. AtCCD1 generating C13 and C14 apocarotenoids and orthologous enzymes in other plants are the only CCDs acting in the cytosol, while the hitherto presumed C40 substrate is localized in the plastid. A new model for CCD1 action arising from a RNAi-mediated CCD1 gene silencing study in mycorrhizal hairy roots of Medicago truncatula may solve this contradiction. This approach unexpectedly resulted in the accumulation of C27 apocarotenoids but not C40 carotenoids suggesting C27 as the main substrates for CCD1 in planta. It further implies a consecutive two-step cleavage process, in which another CCD performs the primary cleavage of C40 to C27 in the plastid followed by C27 export and further cleavage by CCD1 in the cytosol. We compare the specificities and subcellular locations of the various CCDs and propose the plastidial CCD7 to be the first player in mycorrhizal apocarotenoid biogenesis.
Publications
The mutualistic interaction of plants with arbuscular mycorrhizal (AM) fungi is characterized by an exchange of nutrients. The plant provides sugars in the form of hexoses to the heterotrophic fungus in return for phosphate as well as nitrogen, water, and micronutrients. Plant sucrose-cleaving enzymes are predicted to play a crucial role in hexose mobilization as these enzymes appear to be absent in the fungal partner. Here, recent findings concerning the function of plant apoplastic invertases in the AM symbiosis are discussed. Plants with modulated enzyme activity in roots and leaves provide additional insight on the complexity of the regulation of the AM interaction by apoplastic invertases as mycorrhization could be reduced or stimulated depending on the level of invertase activity and its tissue-specific expression.
This page was last modified on 27 Jan 2025 .