Publications - Cell and Metabolic Biology
- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
This page was last modified on 27 Jan 2025 .
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Publications - Cell and Metabolic Biology
Publications
Control over crystal growth by acidic matrix macromolecules is an important process in the formation of many mineralized tissues. Highly acidic macromolecules are postulated intermediates in tissue mineralization, because they sequester many calcium ions and occur in high concentrations at mineralizing foci in distantly related organisms. A prerequisite for biomineralization is the ability of cations like calcium to bind to proteins and to result in concert with appropriate anions like phosphates or carbonates in composite materials with bone‐like properties. For this mineralization process the proteins have to be modified with respect to acidification. In this study we modified the protein collagen by carboxymethylation using glucuronic acid. Our experiments showed unambigously, that Nε‐carboxymethyllysine is the major product of the in vitro nonenzymatic glycation reaction between glucuronic acid and collagen. We hypothesized that the function of biomimetically carboxymethylated collagen is to increase the local concentration of corresponding ions so that a critical nucleus of ions can be formed, leading to the formation of the mineral. Thus, the self‐organization of HAP nanocrystals on and within collagen fibrils was intensified by carboxymethylation.
Publications
A T-DNA insertion mutant of FUSCA3 (fus3-T) in Arabidopsis thaliana exhibits several of the expected deleterious effects on seed development, but not the formation of brown seeds, a colouration which results from the accumulation of large amounts of anthocyanin. A detailed phenotypic comparison between fus3-T and a known splice point mutant (fus3-3) revealed that the seeds from both mutants do not enter dormancy and can be rescued at an immature stage. Without rescue, mature fus3-3 seeds are non-viable, whereas those of fus3-T suffer only a slight loss in their germinability. A series of comparisons between the two mutants uncovered differences with respect to conditional lethality, in histological and sub-cellular features, and in the relative amounts of various storage compounds and metabolites present, leading to a further dissection of developmental processes in seeds and a partial reinterpretation of the complex seed phenotype. FUS3 function is now known to be restricted to the acquisition of embryo-dependent seed dormancy, the determination of cotyledonary cell identity, and the synthesis and accumulation of storage compounds. Based on DNA binding studies, a model is presented which can explain the differences between the mutant alleles. The fus3-T lesion is responsible for loss of function only, while the fus3-3 mutation induces various pleiotropic effects conditioned by a truncation gene product causing severe mis-differentiation.
This page was last modified on 27 Jan 2025 .