Publications - Cell and Metabolic Biology
- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
This page was last modified on 27 Jan 2025 .
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Publications - Cell and Metabolic Biology
Publications
A T-DNA insertion mutant of FUSCA3 (fus3-T) in Arabidopsis thaliana exhibits several of the expected deleterious effects on seed development, but not the formation of brown seeds, a colouration which results from the accumulation of large amounts of anthocyanin. A detailed phenotypic comparison between fus3-T and a known splice point mutant (fus3-3) revealed that the seeds from both mutants do not enter dormancy and can be rescued at an immature stage. Without rescue, mature fus3-3 seeds are non-viable, whereas those of fus3-T suffer only a slight loss in their germinability. A series of comparisons between the two mutants uncovered differences with respect to conditional lethality, in histological and sub-cellular features, and in the relative amounts of various storage compounds and metabolites present, leading to a further dissection of developmental processes in seeds and a partial reinterpretation of the complex seed phenotype. FUS3 function is now known to be restricted to the acquisition of embryo-dependent seed dormancy, the determination of cotyledonary cell identity, and the synthesis and accumulation of storage compounds. Based on DNA binding studies, a model is presented which can explain the differences between the mutant alleles. The fus3-T lesion is responsible for loss of function only, while the fus3-3 mutation induces various pleiotropic effects conditioned by a truncation gene product causing severe mis-differentiation.
Publications
Carbohydrates are synthesised in photosynthetically active source tissues and exported, in most species in the form of sucrose, to photosynthetically less active or inactive sink tissues. Sucrose hydrolysis at the site of utilisation contributes to phloem unloading. This phenomenon links sink metabolism with phloem transport to, and partitioning between, sinks. Invertases catalyse the irreversible hydrolysis of sucrose and thus are expected to contribute to carbohydrate partitioning. Different invertase isoenzymes may be distinguished based on their intracellular location, their isoelectric points and pH optima. Extracellular, cell-wall-bound invertase is uniquely positioned to supply carbohydrates to sink tissues via an apoplasmic pathway, and links the transport sugar sucrose to hexose transporters. A number of studies demonstrate an essential function of this invertase isoenzyme for phloem unloading, carbohydrate partitioning and growth of sink tissues. Extracellular invertases were shown to be specifically expressed under conditions that require a high carbohydrate supply to sink tissues. Further, their expression is upregulated by a number of stimuli that affect source–sink relations. Substrate and reaction products of invertases are not only nutri-ents, but also signal molecules. Like hormones and in combination with hormones and other stimuli, they can regu-late many aspects of plant development from gene expression to long-distance nutrient allocation. Based on studies in Chenopodium rubrum, tomato (Lycopersicon esculentum) and tobacco (Nicotiana tabacum), the regulation of extracellular invertase and its function in assimilate partitioning, defence reactions and sugar signal transduction pathways are discussed.
This page was last modified on 27 Jan 2025 .