Publications - Cell and Metabolic Biology
- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
This page was last modified on 27 Jan 2025 .
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Publications - Cell and Metabolic Biology
Publications
Recent progress in the field of synthetic biology has led to the creation of cells containing synthetic genomes. Although these first synthetic organisms contained copies of natural genomes, future work will be directed toward engineering of organisms with modified genomes and novel phenotypes. Much work, however, remains to be done to be able to routinely engineer novel biological functions. As a tool that will be useful for such purpose, we have recently developed a modular cloning system (MoClo) that allows high throughput assembly of multiple genetic elements. We present here new features of this cloning system that allow to increase the speed of assembly of multigene constructs. As an example, 68 DNA fragments encoding basic genetic elements were assembled using three one-pot cloning steps, resulting in a 50 kb construct containing 17 eukaryotic transcription units. This cloning system should be useful for generating the multiple construct variants that will be required for developing gene networks encoding novel functions, and fine-tuning the expression levels of the various genes involved.
Publications
A T-DNA insertion mutant of FUSCA3 (fus3-T) in Arabidopsis thaliana exhibits several of the expected deleterious effects on seed development, but not the formation of brown seeds, a colouration which results from the accumulation of large amounts of anthocyanin. A detailed phenotypic comparison between fus3-T and a known splice point mutant (fus3-3) revealed that the seeds from both mutants do not enter dormancy and can be rescued at an immature stage. Without rescue, mature fus3-3 seeds are non-viable, whereas those of fus3-T suffer only a slight loss in their germinability. A series of comparisons between the two mutants uncovered differences with respect to conditional lethality, in histological and sub-cellular features, and in the relative amounts of various storage compounds and metabolites present, leading to a further dissection of developmental processes in seeds and a partial reinterpretation of the complex seed phenotype. FUS3 function is now known to be restricted to the acquisition of embryo-dependent seed dormancy, the determination of cotyledonary cell identity, and the synthesis and accumulation of storage compounds. Based on DNA binding studies, a model is presented which can explain the differences between the mutant alleles. The fus3-T lesion is responsible for loss of function only, while the fus3-3 mutation induces various pleiotropic effects conditioned by a truncation gene product causing severe mis-differentiation.
This page was last modified on 27 Jan 2025 .