- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
Publications
This page was last modified on 27 Jan 2025 27 Jan 2025 .
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Liquid chromatography negative ion electrospray ionisation tandem mass spectrometry has been used for characterisation of naturally occurring prenylated fungal metabolites and synthetic derivatives. The fragmentation studies allow an elucidation of the decomposition pathways for these compounds. It could be shown, that the prenyl side chain is degraded by successive radical losses of C5 units. Both the benzoquinones and the phenolic derivatives display significant key ions comprising the aromatic ring. In some cases, the formation of significant oxygen-free key ions could be evidenced by high-resolution MS/MS measurements. Furthermore, the different types of basic skeletons, benzoquinones and phenol type as well as cyclic prenylated compounds, can be differentiated by their MS/MS behaviour.
Publications
Several species of the genus Urtica (especially Urtica dioica, Urticaceae), are used medicinally to treat a variety of ailments. To better understand the chemical diversity of the genus and to compare different accessions and different taxa of Urtica, 63 leaf samples representing a broad geographical, taxonomical and morphological diversity were evaluated under controlled conditions. A molecular phylogeny for all taxa investigated was prepared to compare phytochemical similarity with phylogenetic relatedness. Metabolites were analyzed via UPLC–PDA–MS and multivariate data analyses. In total, 43 metabolites were identified, with phenolic compounds and hydroxy fatty acids as the dominant substance groups. Principal component analysis (PCA) and hierarchical clustering analysis (HCA) provides a first structured chemotaxonomy of the genus. The molecular data present a highly resolved phylogeny with well-supported clades and subclades. U. dioica is retrieved as both para- and polyphyletic. European members of the U. dioica group and the North American subspecies share a rather similar metabolite profile and were largely retrieved as one, nearly exclusive cluster by metabolite data. This latter cluster also includes – remotely related – Urtica urens, which is pharmaceutically used in the same way as U. dioica. However, most highly supported phylogenetic clades were not retrieved in the metabolite cluster analyses. Overall, metabolite profiles indicate considerable phytochemical diversity in the genus, which largely falls into a group characterized by high contents of hydroxy fatty acids (e.g., most Andean-American taxa) and another group characterized by high contents of phenolic acids (especially the U. dioica-clade). Anti-inflammatory in vitro COX1 enzyme inhibition assays suggest that bioactivity may be predicted by gross metabolic profiling in Urtica.
Publications
The demand to develop efficient and reliable analytical methods for the quality control of herbal medicines and nutraceuticals is on the rise, together with an increase in the legal requirements for safe and consistent levels of active principles. Here, we describe an ultra-high performance liquid chromatography method (UHPLC) coupled with quadrupole high resolution time of flight mass spectrometry (qTOF-MS) analysis for the comprehensive measurement of metabolites from three Cynara scolymus (artichoke) cultivars: American Green Globe, French Hyrious, and Egyptian Baladi. Under optimized conditions, 50 metabolites were simultaneously quantified and identified including: eight caffeic acid derivatives, six saponins, 12 flavonoids and 10 fatty acids. Principal component analysis (PCA) was used to define both similarities and differences among the three artichoke leaf cultivars. In addition, batches from seven commercially available artichoke market products were analysed and showed variable quality, particularly in caffeic acid derivatives, flavonoid and fatty acid contents. PCA analysis was able to discriminate between various preparations, including differentiation between various batches from the same supplier. To the best of our knowledge, this study provides the first approach utilizing UHPLC–MS based metabolite fingerprinting to reveal secondary metabolite compositional differences in artichoke leaf extracts.
Publications
Hops (Humulus lupulus L. Cannabaceae) is an economically important crop, that has drawn more attention in recent years due to its potential pharmaceutical applications. Bitter acids (prenylated polyketides) and prenylflavonoids are the primary phytochemical components that account for hops resins medicinal value. We have previously reported on utilizing untargeted NMR and MS metabolomics for analysis of 13 hops cultivars, revealing for differences in α- versus β-bitter acids composition in derived resins. In this study, effect of ratios of bitter α- to β-acids in hop resins to cytotoxicity of hop resins was investigated. In vitro cell culture assays revealed that β-acids were more effective than α-acids in growth inhibition of PC3 and HT29 cancer cell lines. Nevertheless, hop resins enriched in β-acids showed comparable growth inhibition patterns to α-enriched resins and suggesting that bioactivity may not be easily predicted by metabolomics and/or gross metabolic profiling in hops.
Publications
0
Publications
The leaf essential oil of Tarchonanthuscamphoratus(Asteraceae) was obtained by hydrodistillation and analyzed by GC-MS. Fifty-six components were characterized, representing 94.2% of the total oil with oxygenated monoterpenes (48.3%) and oxygenated sesquiterpenes (32.7%) as the major groups. The principal constituents were identified as endo-fenchol (21.2%), trans-pinene hydrate (8.8%), caryophyllene oxide (7.5%), α-terpineol (6.4%), τ-cadinol (6.4%), and α-cadinol (5.2%). The essential oil was evaluated for its antimicrobial activity using a disc diffusion assay resulting in the moderate inhibition of a number of common human pathogenic bacteria, including methicillin-resistant Staphylococcus aureus(MRSA) and the yeast Candida albicans. The inhibition zones varied from 10 to 14mm/disc. Furthermore, the antioxidant capacity of the essential oil was examined using an in vitroradical scavenging activity test. The T. camphoratus essential oil scavenged 1,1-diphenyl-2-picrylhydrazyl radical (DPPH), resulting in an IC50value of 5.6 mg/mL. At concentrations of 100 and 50μg/mL, the oil showed cytotoxic activity, with growth inhibition of 59.1% (±4.2), and 16.2% (±8.7) against HT29 tumor cells (human colonic adenocarcinoma cells), respectively(IC50 = 84.7 ± 7.5 μg/mL).
Publications
Interactions between mushrooms, yeasts, and parasitic fungi are probably common in nature, but are rarely described. Bolete fruiting bodies are associated with a broad spectrum of microorganisms including yeasts, and they are commonly infected with filamentous mycoparasites of the genus Sepedonium (teleomorph Hypomyces). We report the isolation of 17 yeast strains from Paxillus and Xerocomus, 16 of which were obtained from the surface tissue, the primary site of Sepedonium infection. Phylogenetic analyses with the D1/D2 region of the 28S ribosomal gene and the internal transcribed spacers placed the yeasts as Rhodotorula, Rhodosporidium, and Mastigobasidium from the Pucciniomycotina, Cryptococcus, Cystofilobasidium, Holtermanniella, and Trichosporon from the Agaricomycotina, and Kluyveromyces from the Saccharomycotina including the first isolation of Rhodotorula graminis from Europe. To investigate the influence of the yeast strains on the mycoparasite and the host fungus, in vitro assays were conducted with Sepedonium chrysospermum and Paxillus involutus. Both S. chrysospermum growth inhibitory and stimulating yeast strains were detected among the isolates. The number of S. chrysospermum inhibitory yeast strains increased and the number of S. chrysospermum stimulatory yeast strains decreased in the presence of P. involutus in co-cultures. Low nutrient levels in the culture medium also led to an increased number of S. chrysospermum inhibitory yeast strains and ten yeasts inhibited the mycoparasite in spatial separation by a crosswall. Six yeast strains inhibited P. involutus in dual culture, and the inhibitory P. involutus yeast interactions increased to nine in the presence of S. chrysospermum. Our results suggest that the bolete-associated yeasts influence the growth of the mycoparasitic fungus, which may affect the health of the fruiting bodies.
Publications
The dried female flowers of Hagenia abyssinica (Bruce) J. F. Gmel. (Rosaceae) are traditionally used as an anthelmintic remedy in Ethiopia and formerly were incorporated into the European Pharmacopoeia. One-, two- and tricyclic phloroglucinol derivatives (kosins) were suggested to be the active principles. However, polar constituents may also contribute to the activity. Therefore, we investigated for the first time the polar constituents. We isolated typical Rosaceae constituents such as quercetin 3-O-β-glucuronide, quercetin 3-O-β-glucoside and rutin. Polar kosin glycosides or derivatives could not be detected.The anthelmintic activity of fractions of different polarity were tested against the blood fluke Schistosoma mansoni, the liver flukes Clonorchis sinensis and Fasciola hepatica and the intestinal fluke Echinostoma caproni. The anthelmintic activity decreased with increasing polarity of the tested fractions. ESI-MS investigations indicated the predominant occurrence of kosins in the active fractions.Using the anthelmintic active extracts of Hagenia abyssinica we developed a simple, inexpensive bioassay against the non-parasitic nematode Caenorhabditis elegans, which can be used as an initial screening procedure for anthelmintic properties of crude extracts of plants or fungi. The anthelmintic activity of test extracts against the model organism was determined in a microtiter plate assay by enumeration of living and dead nematodes under a microscope.
Publications
The occurrence of flavolignans might be a valuable chemotaxonomic marker for the classification of Rosaceae species.
This page was last modified on 27 Jan 2025 27 Jan 2025 .

