- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Publications
Publications
Publications
Publications
Publications
Publications
This page was last modified on 27 Jan 2025 27 Jan 2025 .
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Publications
The androgen receptor (AR) plays a crucial role in the modulation of prostate cell proliferation and is involved in the development and progression of prostate cancer (PCa). An understanding of the complex regulation of AR provides novel treatment options for PCa. Here, we show (i) that the ubiquitin-like modifier, interferon-stimulated gene 15 (ISG15), and most enzymes involved in ISG15 conjugation were upregulated in tumor samples versus in non-malignant tissues of PCa patients and (ii) that the expression of these components significantly differed between tumors in patients treated with and without androgen ablation. Using PCa cell lines as in vitro models, the specific androgen-mediated, AR-dependent regulation of the ISGylation components was confirmed. In addition, the ISGylation system controls AR mRNA and protein expressions, as overexpression of Ube1L as a limiting ISGylation factor in the AR+ androgen-sensitive PCa cell line, LNCaP, results in significant AR upregulation, accompanied by an increased proliferation even under androgen deprivation. Accordingly, Ube1L knockdown decreased the AR expression. Thus, this study describes for the first time the modulation of AR expression by ISGylation components, which affects the proliferation of PCa cells, thereby providing evidence for a novel function of the ISGylation system in malignant transformation.
Publications
Inflammatory reactions in the CNS, resulting from a loss of control and involving a network of non-neuronal and neuronal cells, are major contributors to the onset and progress of several major neurodegenerative diseases. Therapeutic strategies should therefore keep or restore the well-controlled and finely-tuned balance of immune reactions, and protect neurons from inflammatory damage. In our study, we selected plants of the Malaysian rain forest by an ethnobotanic survey, and investigated them in cell-based-assay-systems and in living brain tissue cultures in order to identify anti-inflammatory and neuroprotective effects. We found that alcoholic extracts from the tropical plant Knema laurina (Black wild nutmeg) exhibited highly anti-inflammatory and neuroprotective effects in cell culture experiments, reduced NO- and IL-6-release from activated microglia cells dose-dependently, and protected living brain tissue from microglia-mediated inflammatory damage at a concentration of 30 µg/ml. On the intracellular level, the extract inhibited ERK-1/2-phosphorylation, IkB-phosphorylation and subsequently NF-kB-translocation in microglia cells. K. laurina belongs to the family of Myristicaceae, which have been used for centuries for treatment of digestive and inflammatory diseases and is also a major food plant of the Giant Hornbill. Moreover, extract from K. laurina promotes also neurogenesis in living brain tissue after oxygen–glucose deprivation. In conclusion, extract from K. laurina not only controls and limits inflammatory reaction after primary neuronal damage, it promotes moreover neurogenesis if given hours until days after stroke-like injury.
Publications
Multicomponent Passerini and Ugi reactions enable the fast and efficient synthesis of redox-active multifunctional selenium and tellurium compounds, of which some show considerable cytotoxicity against specific cancer cells.
Publications
Fruitbodies of the genus Hygrophorus (Basidiomycetes) contain a series of anti‐biologically active compounds. These substances named hygrophorones possess a cyclopentenone skeleton. LC/ESI‐MS/MS presents a valuable tool for the identification of such compounds. The mass spectral behaviour of typical selected members of this group under positive and negative ion electrospray conditions is discussed. Using the ESI collision‐induced dissociation (CID) mass spectra of the [M + H]+ and [M − H]− ions, respectively, the compounds can be classified with respect to the substitution pattern at the cyclopentenone ring and the type of oxygenation at C‐6 (hydroxy/acetoxy or oxo function) of the side chain. The elemental composition of the fragment ions was determined by ESI‐QqTOF measurements. Thus, in case of the negative ion CID mass spectra an unusual loss of CO2 from the deprotonated molecular ions could be observed.
Publications
Epothilones, macrocyclic lactones from culture filtrates of the myxobacterium Sorangium cellulosum, are known as taxol-like microtubular drugs in human medicine. To date, nothing is known about the effect of epothilones on microtubules (MTs) in plant cells and/or on the plant cell cycle. As shown in this report, the treatment of tomato cell suspension cultures with epothilone D produced a continuous increase in the mitotic index. Dose–response curves revealed that epothilone D alters the mitotic index at concentrations as low as 1.5 μM. Mitotic arrest was already visible after only 2 h of treatment, and 55% of the cells were arrested after 24 h. As shown by immunocytological methods, abnormal spindles are formed during metaphase, which leads to a random distribution of chromosomes in the whole cell and prevents the formation of a metaphase plate. The process of chromosome decondensation does not seem to be affected, because micronuclei form at the same place with the distributed chromosomes. This suggests that epothilone D influences the stability of plant MTs mainly during metaphase of the mitotic cycle. In metaphase, the effects of epothilone D seem to be irreversible, because cells with an abnormal spindle could not be recovered after removal of the drug.
Publications
From fruit bodies of the basidiomycete Hygrophorus eburneus (Bull.: Fr.) Fr. (Tricholomataceae) eight fatty acids (C16, C18) with γ -oxocrotonate partial structure could be isolated. Initial tests demonstrate their bactericidal and fungicidal activity. The structures of (2E,9E)-4-oxooctadeca- 2,9,17-trienoic acid (1), (2E,11Z)-4-oxooctadeca-2,11,17-trienoic acid (2), (E)-4-oxohexadeca-2,15- dienoic acid (3), (E)-4-oxooctadeca-2,17-dienoic acid (4), (2E,9E)-4-oxooctadeca-2,9-dienoic acid (5), (2E,11Z)-4-oxooctadeca-2,11-dienoic acid (6), (E)-4-oxohexadec-2-enoic acid (7), and (E)-4- oxooctadec-2-enoic acid (8) were elucidated on the basis of their spectroscopic data.
Publications
Die fungizide Wirkung von verschiedenen Rohextrakten von 23 Arten der Gattung Hygrophorus gegen Cladosporium cucumerinum wird gezeigt. Als Wirkprinzip konnten ungewöhnliche Fettsäuren und die Hygrophorone A-G identifiziert werden.
Publications
Twenty new 5-(hydroxyalkyl)-2-cyclopentenone derivatives (hygrophorones) could be isolated from Hygrophorus latitabundus, H. olivaceoalbus, H. persoonii, and H. pustulatus. Their fungicidal activity was exemplarily tested. The hygrophorones have structural similarities to the antibiotic pentenomycin. Chemically, hygrophorones are 2-cyclopentenones with hydroxy or acetoxy substituents at C-4 and/or C-5. An odd-numbered 1′ oxidized alkyl chain (C11, C13, C15, or C17) is attached at C-5. In addition, from H. persoonii the new γ-butyrolactone derivative [5-(E)-2-hydroxytetradexylidene-5H-furan-2-one] could be isolated. Some hygrophorones are responsible for the color reaction of the stipes of these fungi upon treatment with potassium hydroxide solution. Structural elucidations are based on 1D (1H, 13C) and 2D (COSY, NOESY, HSQC, HMBC) NMR spectroscopic analyses as well as HR-FT-ICR-MS investigations.A series of new cyclopentenone derivatives and butyrolactones with antifungical activity could be isolated from fruit bodies of the basidiomyceteous genus Hygrophorus. Structural elucidations are based on 1D and 2D NMR spectroscopic analyses as well as HR-FT-ICR-MS investigations.
This page was last modified on 27 Jan 2025 27 Jan 2025 .