Publications - Stress and Develop Biology
- Results as:
- Print view
- Endnote (RIS)
- BibTeX
- Table: CSV | HTML
Publications
Preprints
Publications
This page was last modified on 27 Jan 2025 .
Research Mission and Profile
Molecular Signal Processing
Bioorganic Chemistry
Biochemistry of Plant Interactions
Cell and Metabolic Biology
Independent Junior Research Groups
Program Center MetaCom
Publications
Good Scientific Practice
Research Funding
Networks and Collaborative Projects
Symposia and Colloquia
Alumni Research Groups
Publications
Publications - Stress and Develop Biology
Publications
Poly(ADP-ribosyl)ation (PARylation) is a reversible post-translational protein modification that has profound regulatory functions in metabolism, development and immunity, and is conserved throughout the eukaryotic lineage. Contrary to metazoa, many components and mechanistic details of PARylation have remained unidentified in plants. Here we present the transcriptional co-regulator RADICAL-INDUCED CELL DEATH1 (RCD1) as a plant PAR-reader. RCD1 is a multidomain protein with intrinsically disordered regions (IDRs) separating its domains. We have reported earlier that RCD1 regulates plant development and stress-tolerance by interacting with numerous transcription factors (TFs) through its C-terminal RST domain. This study suggests that the N-terminal WWE and PARP-like domains, as well as the connecting IDR play an important regulatory role for RCD1 function. We show that RCD1 binds PAR in vitro via its WWE domain and that PAR-binding determines RCD1 localization to nuclear bodies (NBs) in vivo. Additionally, we found that RCD1 function and stability is controlled by Photoregulatory Protein Kinases (PPKs). PPKs localize with RCD1 in NBs and phosphorylate RCD1 at multiple sites affecting its stability. This work proposes a mechanism for negative transcriptional regulation in plants, in which RCD1 localizes to NBs, binds TFs with its RST domain and is degraded after phosphorylation by PPKs.
Preprints
Continuous reprograming of gene expression in response to environmental signals in plants is achieved through signaling hub proteins that integrate external stimuli and transcriptional responses. RADICAL-INDUCED CELL DEATH1 (RCD1) functions as a nuclear hub protein, which interacts with a variety of transcription factors with its C-terminal RST domain and thereby acts as a co-regulator of numerous plant stress reactions. Here a previously function for RCD1 as a novel plant PAR reader protein is shown; RCD1 functions as a scaffold protein, which recruits transcription factors to specific locations inside the nucleus in PAR-dependent manner. The N-terminal WWE- and PARP-like domains of RCD1 bind poly(ADP-ribose) (PAR) and determine its localization to nuclear bodies (NBs), which is prevented by chemical inhibition of PAR synthesis. RCD1 also binds and recruits Photoregulatory Protein Kinases (PPKs) to NBs. The PPKs, which have been associated with circadian clock, abscisic acid, and light signaling pathways, phosphorylate RCD1 at multiple sites in the intrinsically disordered region between the WWE- and PARP-like-domains, which affects the stability and function of RCD1 in the nucleus. Phosphorylation of RCD1 by PPKs provides a mechanism where turnover of a PAR-binding transcriptional co-regulator is controlled by nuclear phosphorylation signaling pathways.
Publications
The lipid biopolymer suberin plays a major role as a barrier both at plant-environment interfaces and in internal tissues, restricting water and nutrient transport. In potato (Solanum tuberosum), tuber integrity is dependent on suberized periderm. Using microarray analyses, we identified ABCG1, encoding an ABC transporter, as a gene responsive to the pathogen-associated molecular pattern Pep-13. Further analyses revealed that ABCG1 is expressed in roots and tuber periderm, as well as in wounded leaves. Transgenic ABCG1-RNAi potato plants with downregulated expression of ABCG1 display major alterations in both root and tuber morphology, whereas the aerial part of the ABCG1-RNAi plants appear normal. The tuber periderm and root exodermis show reduced suberin staining and disorganized cell layers. Metabolite analyses revealed reduction of esterified suberin components and hyperaccumulation of putative suberin precursors in the tuber periderm of RNA interference plants, suggesting that ABCG1 is required for the export of suberin components.
This page was last modified on 27 Jan 2025 .