jump to searchjump to navigationjump to content

Publications - Stress and Develop Biology

Sort by: Year Type of publication

Displaying results 1 to 2 of 2.

Publications

Sheikh, A.H.; Raghuram, B.; Eschen-Lippold, L.; Scheel, D.; Lee, J.; Sinha, A.K. Agroinfiltration by cytokinin-producing Agrobacterium strain GV3101 primes defense responses in Nicotiana tabacum. Mol Plant Microbe Interact 27, 1175-1185, (2014) DOI: 10.1094/MPMI-04-14-0114-R

Transient infiltrations in tobacco are commonly used in plant studies but the host response to different disarmed Agrobacterium strains is not fully understood. The present study shows that the pre-treatment with disarmed Agrobacterium tumefaciens strain GV3101 primes the defense response to subsequent infection by Pseudomonas syringae in Nicotiana tabacum. The presence of a trans-zeatin synthase (tzs) gene in strain GV3101 may be partly responsible for the priming response as the tzs deficient Agrobacterium strain LBA4404 only weakly imparts such responses. Besides inducing the expression of defense-related genes like PR-1 and NHL10, GV3101 pre-treatment increased the expression of tobacco mitogen-activated protein kinase pathway genes like MEK2, WIPK and SIPK . Furthermore, the GV3101 strain showed a stronger effect than the LBA4404 strain in activating phosphorylation of the tobacco MAP kinases, WIPK and SIPK, which presumably primes the plant immune machinery. Lower doses of exogenously applied cytokinins increased the activation of MAPKs while higher doses decreased the activation, suggesting a balanced level of cytokinins is required to generate defense response in planta. The current study serves as a cautionary warning for plant researchers over the choice of Agrobacterium strains and their possible consequences on subsequent pathogen-related studies.
Publications

Brunner, F.; Rosahl, S.; Lee, J.; Rudd, J.J.; Geiler, C.; Kauppinen, S.; Rasmussen, G.; Scheel, D.; Nürnberger, T. Pep-13, a plant defense-inducing pathogen-associated pattern from <em>Phytophthora transglutaminases</em> EMBO J 21, 6681-6688, (2002)

Innate immunity, an ancient form of defense against microbial infection, is well described for animals and is also suggested to be important for plants. Discrimination from self is achieved through receptors that recognize pathogen-associated molecular patterns (PAMPs) not found in the host. PAMPs are evolutionarily conserved structures which are functionally important and, thus, not subject to frequent mutation. Here we report that the previously described peptide elicitor of defense responses in parsley, Pep-13, constitutes a surface-exposed fragment within a novel calcium-dependent cell wall transglutaminase (TGase) from Phytophthora sojae. TGase transcripts and TGase activity are detectable in all Phytophthora species analyzed, among which are some of the most destructive plant pathogens. Mutational analysis within Pep-13 identified the same amino acids indispensable for both TGase and defense-eliciting activity. Pep-13, conserved among Phytophthora TGases, activates defense in parsley and potato, suggesting its function as a genus-specific recognition determinant for the activation of plant defense in host and non-host plants. In summary, plants may recognize PAMPs with characteristics resembling those known to trigger innate immune responses in animals.
IPB Mainnav Search