zur Suche springenzur Navigation springenzum Inhalt springen

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 45.

Publikation

Küster, N., Rosahl, S. & Dräger, B. Potato plants with genetically engineered tropane alkaloid precursors Planta 245 , 355-365, (2017) DOI: 10.1007/s00425-016-2610-7

Solanum tuberosumtropinone reductase I reduced tropinone in vivo. Suppression of tropinone reductase II strongly reduced calystegines in sprouts. Overexpression of putrescineN-methyltransferase did not alter calystegine accumulation.

Calystegines are hydroxylated alkaloids formed by the tropane alkaloid pathway. They accumulate in potato (Solanum tuberosum L., Solanaceae) roots and sprouting tubers. Calystegines inhibit various glycosidases in vitro due to their sugar-mimic structure, but functions of calystegines in plants are not understood. Enzymes participating in or competing with calystegine biosynthesis, including putrescine N-methyltransferase (PMT) and tropinone reductases (TRI and TRII), were altered in their activity in potato plants by RNA interference (RNAi) and by overexpression. The genetically altered potato plants were investigated for the accumulation of calystegines and for intermediates of their biosynthesis. An increase in N-methylputrescine provided by DsPMT expression was not sufficient to increase calystegine accumulation. Overexpression and gene knockdown of StTRI proved that S. tuberosum TRI is a functional tropinone reductase in vivo, but no influence on calystegine accumulation was observed. When StTRII expression was suppressed by RNAi, calystegine formation was severely compromised in the transformed plants. Under phytochamber and green house conditions, the StTRII RNAi plants did not show phenotypic alterations. Further investigation of calystegines function in potato plants under natural conditions is enabled by the calystegine deprived StTRII RNAi plants.

Publikation

Dobritzsch, M., Lübken, T., Eschen-Lippold, L., Gorzolka, K., Blum, E., Matern, A., Marillonnet, S., Böttcher, C., Dräger, B. & Rosahl, S. MATE Transporter-Dependent Export of Hydroxycinnamic Acid Amides. Plant Cell 28, 583-596, (2016) DOI: 10.1105/tpc.15.00706

The ability of Arabidopsis thaliana to successfully prevent colonization by Phytophthora infestans, the causal agent of late blight disease of potato (Solanum tuberosum), depends on multilayered defense responses. To address the role of surface-localized secondary metabolites for entry control, droplets of a P. infestans zoospore suspension, incubated on Arabidopsis leaves, were subjected to untargeted metabolite profiling. The hydroxycinnamic acid amide coumaroylagmatine was among the metabolites secreted into the inoculum. In vitro assays revealed an inhibitory activity of coumaroylagmatine on P. infestans spore germination. Mutant analyses suggested a requirement of the p-coumaroyl-CoA:agmatine N4-p-coumaroyl transferase ACT for the biosynthesis and of the MATE transporter DTX18 for the extracellular accumulation of coumaroylagmatine. The host plant potato is not able to efficiently secrete coumaroylagmatine. This inability is overcome in transgenic potato plants expressing the two Arabidopsis genes ACT and DTX18. These plants secrete agmatine and putrescine conjugates to high levels, indicating that DTX18 is a hydroxycinnamic acid amide transporter with a distinct specificity. The export of hydroxycinnamic acid amides correlates with a decreased ability of P. infestans spores to germinate, suggesting a contribution of secreted antimicrobial compounds to pathogen defense at the leaf surface.

Publikation

Geissler, K., Eschen-Lippold, L., Naumann, K., Schneeberger, K., Weigel, D., Scheel, D., Rosahl, S. & Westphal, L. Mutations in ENHANCED DISEASE RESISTANCE1 (EDR1) alter the response of Arabidopsis thaliana to Phytophthora infestans and the bacterial PAMPs, flg22 and elf18.   Mol Plant Microbe Interact. 28, 122-133, (2015) DOI: 10.1094/MPMI-09-14-0282-R

Mechanistically, nonhost resistance of Arabidopsis thaliana against the oomycete Phytophthora infestans is not well understood. Besides PEN2 and PEN3, which contribute to penetration resistance, no further components have been identified so far. In an EMS-mutant screen, we mutagenized pen2-1 and screened for mutants with an altered response to infection by P. infestans. One of the mutants obtained, enhanced response to Phytophthora infestans6 (erp6), was analyzed. Whole genome sequencing of erp6 revealed a single nucleotide polymorphism in the coding region of the kinase domain of At1g08720, which encodes the putative MAPKKK ENHANCED DISEASE RESISTANCE1 (EDR1). We demonstrate that three independent lines with knock out alleles of edr1 mount an enhanced response to P. infestans inoculation, mediated by increased salicylic acid signaling and callose deposition. Moreover, we show that the single amino acid substitution in erp6 causes the loss of in vitro autophosphorylation activity of EDR1. Furthermore, growth inhibition experiments suggest a so far unknown involvement of EDR1 in the response to the PAMPs, flg22 and elf18. We conclude that EDR1 contributes to the defense response of A. thaliana against P. infestans. Our data position EDR1 as a negative regulator in post-invasive nonhost resistance.

Publikation

Landgraf, R., Smolka, U., Altmann, S., Eschen-Lippold, L., Senning, M., Sonnewald, S., Weigel, B., .Frolova, N., Strehmel, N., Hause, G., Scheel, D., Böttcher, C. & Rosahl, S. The ABC transporter ABCG1 is required for suberin formation in potato tuber periderm Plant Cell 26, 3403-3415 , (2014) DOI: 10.1105/tpc.114.124776

The lipid biopolymer suberin plays a major role as a barrier both at plant-environment interfaces and in internal tissues, restricting water and nutrient transport. In potato (Solanum tuberosum), tuber integrity is dependent on suberized periderm. Using microarray analyses, we identified ABCG1 , encoding an ABC transporter, as a gene responsive to the pathogen-associated molecular pattern Pep-13. Further analyses revealed that ABCG1 is expressed in roots and tuber periderm, as well as in wounded leaves. Transgenic ABCG1-RNAi potato plants with downregulated expression of ABCG1 display major alterations in both root and tuber morphology, whereas the aerial part of the ABCG1-RNAi plants appear normal. The tuber periderm and root exodermis show reduced suberin staining and disorganized cell layers. Metabolite analyses revealed reduction of esterified suberin components and hyperaccumulation of putative suberin precursors in the tuber periderm of RNA interference plants, suggesting that ABCG1 is required for the export of suberin components.

Publikation

Thum, A., Mönchgesang, S., Westphal, L., Lübken, T., Rosahl, S., Neumann, S. & Posch, S. Supervised Penalized Canonical Correlation Analysis arXiv (2014)

The canonical correlation analysis (CCA) is commonly used to analyze data sets with paired data, e.g. measurements of gene expression and metabolomic intensities of the same experiments. This allows to find interesting relationships between the data sets, e.g. they can be assigned to biological processes. However, it can be difficult to interpret the processes and often the relationships observed are not related to the experimental design but to some unknown parameters.

Here we present an extension of the penalized CCA, the supervised penalized approach (spCCA), where the experimental design is used as a third data set and the correlation of the biological data sets with the design data set is maximized to find interpretable and meaningful canonical variables. The spCCA was successfully tested on a data set of Arabidopsis thaliana with gene expression and metabolite intensity measurements and resulted in eight significant canonical variables and their interpretation. We provide an R-package under the GPL license.

Publikation

Stegmann, M., Anderson, R. G., Westphal, L., Rosahl, S., McDowell, J. M. & Trujillo, M. The exocyst subunit Exo70B1 is involved in the immune response of Arabidopsis thaliana to different pathogens and cell death Plant Signal. & Behavior 8, e27421, (2013) DOI: 10.4161/psb.27421

Components of the vesicle trafficking machinery are central to the immune response in plants. The role of vesicle trafficking during pre-invasive penetration resistance has been well documented. However, emerging evidence also implicates vesicle trafficking in early immune signaling. Here we report that Exo70B1, a subunit of the exocyst complex which mediates early tethering during exocytosis is involved in resistance. We show that exo70B1 mutants display pathogen-specific immuno-compromised phenotypes. We also show that exo70B1 mutants display lesion-mimic cell death, which in combination with the reduced responsiveness to pathogen-associated molecular patterns (PAMPs) results in complex immunity-related phenotypes.

Publikation

Kopischke, M., Westphal, L., Schneeberger, K., Clark, R., Ossowski, S., Wewer, V., Fuchs, R., Landtag, J., Hause, G., Dörmann, P., Lipka, V., Weigel, D., Schulze-Lefert, P., Scheel, D. & Rosahl, S. Impaired sterol ester synthesis alters the response of Arabidopsis thaliana to Phytophthora infestans. Plant J 73, 456-468, (2013) DOI: 10.1111/tpj.12046

Non-host resistance of Arabidopsis thaliana against Phytophthora infestans, the causal agent of late blight disease of potato, depends on efficient extracellular pre- and post-invasive resistance responses. Pre-invasive resistance against P. infestans requires the myrosinase PEN2. To identify additional genes involved in non-host resistance to P. infestans, a genetic screen was performed by re-mutagenesis of pen2 plants. Fourteen independent mutants were isolated that displayed an enhanced response to Phytophthora (erp) phenotype. Upon inoculation with P. infestans, two mutants, pen2-1 erp1-3 and pen2-1 erp1-4, showed an enhanced rate of mesophyll cell death and produced excessive callose deposits in the mesophyll cell layer. ERP1 encodes a phospholipid:sterol acyltransferase (PSAT1) that catalyzes the formation of sterol esters. Consistent with this, the tested T-DNA insertion lines of PSAT1 are phenocopies of erp1 plants. Sterol ester levels are highly reduced in all erp1/psat1 mutants, whereas sterol glycoside levels are increased twofold. Excessive callose deposition occurred independently of PMR4/GSL5 activity, a known pathogen-inducible callose synthase. A similar formation of aberrant callose deposits was triggered by the inoculation of erp1 psat1 plants with powdery mildew. These results suggest a role for sterol conjugates in cell non-autonomous defense responses against invasive filamentous pathogens.
Publikation

Kirsten, S., Navarro-Quezada, A., Penselin, D., Wenzel, C., Matern, A., Leitner, A., Baum, T., Seiffert, U. & Knogge, W. Necrosis-inducing proteins of Rhynchosporium commune, effectors in quantitative disease resistance Mol. Plant-Microbe Interact. 25, 1314-1325, (2012) DOI: 10.1094/MPMI-03-12-0065-R

The barley pathogen Rhynchosporium commune secretes necrosis-inducing proteins NIP1, NIP2, and NIP3. Expression analysis revealed that NIP1 transcripts appear to be present in fungal spores already, whereas NIP2 and NIP3 are synthesized after inoculation of host plants. To assess the contribution of the three effector proteins to disease development, deletion mutants were generated. The development of these fungal mutants on four barley cultivars was quantified in comparison with that of the parent wild-type strain and with two fungal strains failing to secrete an “active” NIP1 avirulence protein, using quantitative polymerase chain reaction as well as microscopic imaging after fungal green fluorescent protein tagging. The impact of the three deletions varied quantitatively depending on the host genotype, suggesting that the activities of the fungal effectors add up to produce stronger growth patterns and symptom development. Alternatively, recognition events of differing intensities may be converted into defense gene expression in a quantitative manner.

Publikation

Eschen-Lippold, L., Rosahl, S., Westermann, B. & Arnold, N. Aus Pilzen isolierte Substanz gegen den Erreger der Kraut- und Knollenfäule Kartoffelbau 63 (6), 18-21, (2012)

0
Publikation

Eschen-Lippold, L., Lübken, T., Smolka, U. & Rosahl, S. Characterization of potato plants with reduced StSYR1 expression Plant Sign. Behavior 7, 559-562, (2012)

0
IPB Mainnav Search