zur Suche springenzur Navigation springenzum Inhalt springen

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 7 von 7.

Preprints

Schreiber, T.; Tripathee, S.; Iwen, T.; Prange, A.; Vahabi, K.; Grützner, R.; Horn, C.; Marillonnet, S.; Tissier, A.; DNA double strand breaks lead to de novo transcription and translation of damage-induced long RNAs in planta bioRxiv (2022) DOI: 10.1101/2022.05.11.491484

DNA double strand breaks (DSBs) are lethal threats that need to be repaired. Although many of the proteins involved in the early steps of DSB repair have been characterized, recent reports indicate that damage induced long and small RNAs also play an important role in DSB repair. Here, using a Nicotiana benthamiana transgenic line originally designed as a reporter for targeted knock-ins, we show that DSBs generated by Cas9 induce the transcription of long stable RNAs (damage-induced long RNAs - dilRNAs) that are translated into proteins. Using an array of single guide RNAs we show that the initiation of transcription takes place in the vicinity of the DSB. Single strand DNA nicks are not able to induce transcription, showing that cis DNA damage-induced transcription is specific for DSBs. Our results support a model in which a default and early event in the processing of DSBs is transcription into RNA which, depending on the genomic and genic context, can undergo distinct fates, including translation into protein, degradation or production of small RNAs. Our results have general implications for understanding the role of transcription in the repair of DSBs and, reciprocally, reveal DSBs as yet another way to regulate gene expression.
Preprints

Grützner, R.; Martin, P.; Horn, C.; Mortensen, S.; Cram, E. J.; Lee-Parsons, C. W. T.; Stuttmann, J.; Marillonnet, S.; Addition of Multiple Introns to a Cas9 Gene Results in Dramatic Improvement in Efficiency for Generation of Gene Knockouts in Plants bioRxiv (2020) DOI: 10.1101/2020.04.03.023036

The recent discovery of the mode of action of the CRISPR/Cas9 system has provided biologists with a useful tool for generating site-specific mutations in genes of interest. In plants, site-targeted mutations are usually obtained by stably transforming a Cas9 expression construct into the plant genome. The efficiency with which mutations are obtained in genes of interest can vary considerably depending on specific features of the constructs, including the source and nature of the promoters and terminators used for expression of the Cas9 gene and the guide RNA, and the sequence of the Cas9 nuclease itself. To optimize the efficiency with which mutations could be obtained in target genes in Arabidopsis thaliana with the Cas9 nuclease, we have investigated several features of its nucleotide and/or amino acid sequence, including the codon usage, the number of nuclear localization signals (NLS) and the presence or absence of introns. We found that the Cas9 gene codon usage had some effect on Cas9 activity and that two NLSs work better than one. However, the most important impact on the efficiency of the constructs was obtained by addition of 13 introns into the Cas9 coding sequence, which dramatically improved editing efficiencies of the constructs; none of the primary transformants obtained with a Cas9 lacking introns displayed a knockout mutant phenotype, whereas between 70% and 100% of primary transformants generated with intronized Cas9 displayed mutant phenotypes. The intronized Cas9 was also found to be effective in other plants such as Nicotiana benthamiana and Catharanthus roseus.
Preprints

Barthel, K.; Martin, P.; Ordon, J.; Erickson, J. L.; Gantner, J.; Erickson, J. L.; Herr, R.; Kretschmer, C.; Ferik, F.; Berner, T.; Keilwagen, J.; Marillonnet, S.; Stuttmann, J.; Bonas, U.; One-shot generation of duodecuple (12x) mutant Arabidopsis: Highly efficient routine editing in model species bioRxiv (2020) DOI: 10.1101/2020.03.31.018671

Genome editing by RNA-guided nucleases in model species is still hampered by low efficiencies, and isolation of transgene-free individuals often requires tedious PCR screening. Here, we present a toolkit that mitigates these drawbacks for Nicotiana benthamiana and Arabidopsis thaliana. The toolkit is based on an intron-optimized SpCas9-coding gene (zCas9i), which conveys dramatically enhanced editing efficiencies. The zCas9i gene is combined with remaining components of the genome editing system in recipient vectors, which lack only the user-defined guide RNA transcriptional units. Up to 32 guide RNA transcriptional units can be introduced to these recipients by a simple and PCR-free cloning strategy, with the choice of three different RNA polymerase III promoters for guide RNA expression. We developed new markers to aid transgene counter-selection in N. benthamiana, and demonstrate their efficacy for isolation of several genome-edited N. benthamiana lines. In Arabidopsis, we explore the limits of multiplexing by simultaneously targeting 12 genes by 24 sgRNAs. Perhaps surprisingly, the limiting factor in such higher order multiplexing applications is Cas9 availability, rather than recombination or silencing of repetitive sgRNA TU arrays. Through a combination of phenotypic screening and pooled amplicon sequencing, we identify transgene-free duodecuple mutant Arabidopsis plants directly in the T2 generation. This demonstrates high efficiency of the zCas9i gene, and reveals new perspectives for multiplexing to target gene families and to generate higher order mutants.
Preprints

Püllmann, P.; Knorrscheidt, A.; Münch, J.; Palme, P. R.; Hoehenwarter, W.; Marillonnet, S.; Alcalde, M.; Westermann, B.; Weissenborn, M. J.; A modular two yeast species secretion system for the production and preparative application of fungal peroxygenases bioRxiv (2020) DOI: 10.1101/2020.07.22.216432

Fungal unspecific peroxygenases (UPOs) are biocatalysts of outstanding interest. Providing access to novel UPOs using a modular secretion system was the central goal of this work. UPOs represent an enzyme class, catalysing versatile oxyfunctionalisation reactions on a broad substrate scope. They are occurring as secreted, glycosylated proteins bearing a haem-thiolate active site and solely rely on hydrogen peroxide as the oxygen source. Fungal peroxygenases are widespread throughout the fungal kingdom and hence a huge variety of UPO gene sequences is available. However, the heterologous production of UPOs in a fast-growing organism suitable for high throughput screening has only succeeded once—enabled by an intensive directed evolution campaign. Here, we developed and applied a modular Golden Gate-based secretion system, allowing the first yeast production of four active UPOs, their one-step purification and application in an enantioselective conversion on a preparative scale. The Golden Gate setup was designed to be broadly applicable and consists of the three module types: i) a signal peptide panel guiding secretion, ii) UPO genes, and iii) protein tags for purification and split-GFP detection. We show that optimal signal peptides could be selected for successful UPO secretion by combinatorial testing of 17 signal peptides for each UPO gene. The modular episomal system is suitable for use in Saccharomyces cerevisiae and was transferred to episomal and chromosomally integrated expression cassettes in Pichia pastoris. Shake flask productions in Pichia pastoris yielded up to 24 mg/L secreted UPO enzyme, which was employed for the preparative scale conversion of a phenethylamine derivative reaching 98.6 % ee. Our results demonstrate a rapid workflow from putative UPO gene to preparative scale enantioselective biotransformations.
Preprints

Püllmann, P.; Ulpinnis, C.; Marillonnet, S.; Gruetzner, R.; Neumann, S.; Weissenborn, M. J.; Golden Mutagenesis: An efficient multi-site-saturation mutagenesis approach by Golden Gate cloning with automated primer design bioRxiv (2018) DOI: 10.1101/453621

Site-directed methods for the generation of genetic diversity are essential tools in the field of directed enzyme evolution. The Golden Gate cloning technique has been proven to be an efficient tool for a variety of cloning setups. The utilization of restriction enzymes which cut outside of their recognition domain allows the assembly of multiple gene fragments obtained by PCR amplification without altering the open reading frame of the reconstituted gene. We have developed a protocol, termed Golden Muta-genesis that allows the rapid, straightforward, reliable and inexpensive construction of mutagenesis libraries. One to five amino acid positions within a coding sequence could be altered simultaneously using a protocol which can be performed within one day. To facilitate the implementation of this technique, a software library and web application for automated primer design and for the graphical evaluation of the randomization success based on the sequencing results was developed. This allows facile primer design and application of Golden Mutagenesis also for laboratories, which are not specialized in molecular biology.
Preprints

Ordon, J.; Bressan, M.; Kretschmer, C.; Dall'Osto, L.; Marillonnet, S.; Bassi, R.; Stuttmann, J.; Optimized Cas9 expression systems for highly efficient Arabidopsis genome editing facilitate isolation of complex alleles in a single generation bioRxiv (2018) DOI: 10.1101/393439

Genetic resources for the model plant Arabidopsis comprise mutant lines defective in almost any single gene in reference accession Columbia. However, gene redundancy and/or close linkage often render it extremely laborious or even impossible to isolate a desired line lacking a specific function or set of genes from segregating populations. Therefore, we here evaluated strategies and efficiencies for the inactivation of multiple genes by Cas9-based nucleases and multiplexing. In first attempts, we succeeded in isolating a mutant line carrying a 70 kb deletion, which occurred at a frequency of ~1.6% in the T2 generation, through PCR-based screening of numerous individuals. However, we failed to isolate a line lacking Lhcb1 genes, which are present in five copies organized at two loci in the Arabidopsis genome. To improve efficiency of our Cas9-based nuclease system, regulatory sequences controlling Cas9 expression levels and timing were systematically compared. Indeed, use of DD45 and RPS5a promoters improved efficiency of our genome editing system by approximately 25-30-fold in comparison to the previous ubiquitin promoter. Using an optimized genome editing system with RPS5a promoter-driven Cas9, putatively quintuple mutant lines lacking detectable amounts of Lhcb1 protein represented approximately 30% of T1 transformants. These results show how improved genome editing systems facilitate the isolation of complex mutant alleles, previously considered impossible to generate, at high frequency even in a single (T1) generation.
Preprints

Gantner, J.; Ilse, T.; Ordon, J.; Kretschmer, C.; Gruetzner, R.; Löfke, C.; Dagdas, Y.; Bürstenbinder, K.; Marillonnet, S.; Stuttmann, J.; Peripheral infrastructure vectors and an extended set of plant parts for the modular cloning system bioRxiv (2017) DOI: 10.1101/237768

Standardized DNA assembly strategies facilitate the generation of multigene constructs from collections of building blocks in plant synthetic biology. A common syntax for hierarchical DNA assembly following the Golden Gate principle employing Type IIs restriction endonucleases was recently developed, and underlies the Modular Cloning and GoldenBraid systems. In these systems, transcriptional units and/or multigene constructs are assembled from libraries of standardized building blocks, also referred to as phytobricks, in several hierarchical levels and by iterative Golden Gate reactions. This combinatorial assembly strategy meets the increasingly complex demands in biotechnology and bioengineering, and also represents a cost-efficient and versatile alternative to previous molecular cloning techniques. For Modular Cloning, a collection of commonly used Plant Parts was previously released together with the Modular Cloning toolkit itself, which largely facilitated the adoption of this cloning system in the research community. Here, a collection of approximately 80 additional phytobricks is provided. These phytobricks comprise e.g. modules for inducible expression systems, different promoters or epitope tags, which will increase the versatility of Modular Cloning-based DNA assemblies. Furthermore, first instances of a “peripheral infrastructure” around Modular Cloning are presented: While available toolkits are designed for the assembly of plant transformation constructs, vectors were created to also use coding sequence-containing phytobricks directly in yeast two hybrid interaction or bacterial infection assays. Additionally, DNA modules and assembly strategies for connecting Modular Cloning with Gateway Cloning are presented, which may serve as an interface between available resources and newly adopted hierarchical assembly strategies. The presented material will be provided as a toolkit to the plant research community and will further enhance the usefulness and versatility of Modular Cloning.
IPB Mainnav Search