zur Suche springenzur Navigation springenzum Inhalt springen

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 8 von 8.

Bücher und Buchkapitel

Marillonnet, S.; Werner, S.; Assembly of Multigene Constructs Using the Modular Cloning System MoClo (In: Chandran S., George K.). Methods Mol. Biol. 2205, 125-141, (2020) ISBN: 978-1-0716-0907-1 DOI: 10.1007/978-1-0716-0908-8_8

Modular cloning systems that rely on type IIS enzymes for DNA assembly have many advantages for complex pathway engineering. These systems are simple to use, efficient, and allow users to assemble multigene constructs by performing a series of one-pot assembly steps, starting from libraries of cloned and sequenced parts. The efficiency of these systems also facilitates the generation of libraries of construct variants. We describe here a protocol for assembly of multigene constructs using the Modular Cloning system MoClo. Making constructs using the MoClo system requires users to first define the structure of the final construct to identify all basic parts and vectors required for the construction strategy. The assembly strategy is then defined following a set of standard rules. Multigene constructs are then assembled using a series of one-pot assembly steps with the set of identified parts and vectors.
Bücher und Buchkapitel

Marillonnet, S.; Werner, S.; Assembly of Complex Pathways Using Type IIs Restriction Enzymes (Santos, C. N. S. & Ajikumar, P. K., eds.). Methods Mol. Biol. 1927, 93-109, (2019) ISBN: 978-1-4939-9142-6 DOI: 10.1007/978-1-4939-9142-6_7

Efficient DNA assembly methods are essential tools for synthetic biology and metabolic engineering. Among several recently developed methods that allow assembly of multiple DNA fragments in a single step, DNA assembly using type IIS enzymes provides many advantages for complex pathway engineering. In particular, it provides the ability for the user to quickly assemble multigene constructs using a series of simple one-pot assembly steps starting from libraries of cloned and sequenced parts. We describe here a protocol for assembly of multigene constructs using the modular cloning system (MoClo). Making constructs using the MoClo system requires to first define the structure of the final construct to identify all basic parts and vectors required for the construction strategy. Basic parts that are not yet available need to be made. Multigene constructs are then assembled using a series of one-pot assembly steps with the set of identified parts and vectors.
Bücher und Buchkapitel

Marillonnet, S.; Werner, S.; Assembly of Multigene Constructs Using Golden Gate Cloning (Castilho, A., ed.). Methods Mol. Biol. 1321, 269-284, (2015) ISBN: 978-1-4939-2760-9 DOI: 10.1007/978-1-4939-2760-9_19

Efficient DNA assembly methods are required for synthetic biology. Standardization of DNA parts is an essential element that not only facilitates reuse of the same parts for various constructs but also allows standardization of the assembly strategy. We provide here a protocol for assembly of multigene constructs from standard biological parts using the modular cloning system MoClo. Making constructs using this system requires to first define the structure of the final construct and to identify all basic parts and vectors required for the construction strategy. The cloning strategy is in large part determined by the structure of the final construct, which is then made using a series of one-pot Golden Gate cloning reactions.
Publikation

Engler, C.; Youles, M.; Gruetzner, R.; Ehnert, T.-M.; Werner, S.; Jones, J. D. G.; Patron, N. J.; Marillonnet, S.; A Golden Gate Modular Cloning Toolbox for Plants ACS Synth. Biol. 3, 839-843, (2014) DOI: 10.1021/sb4001504

Plant Synthetic Biology requires robust and efficient methods for assembling multigene constructs. Golden Gate cloning provides a precision module-based cloning technique for facile assembly of multiple genes in one construct. We present here a versatile resource for plant biologists comprising a set of cloning vectors and 96 standardized parts to enable Golden Gate construction of multigene constructs for plant transformation. Parts include promoters, untranslated sequences, reporters, antigenic tags, localization signals, selectable markers, and terminators. The comparative performance of parts in the model plant Nicotiana benthamiana is discussed.
Publikation

Schneider, J. D.; Marillonnet, S.; Castilho, A.; Gruber, C.; Werner, S.; Mach, L.; Klimyuk, V.; Mor, T. S.; Steinkellner, H.; Oligomerization status influences subcellular deposition and glycosylation of recombinant butyrylcholinesterase in Nicotiana benthamiana Plant Biotechnol. J. 12, 832-839, (2014) DOI: 10.1111/pbi.12184

Plants have a proven track record for the expression of biopharmaceutically interesting proteins. Importantly, plants and mammals share a highly conserved secretory pathway that allows similar folding, assembly and posttranslational modifications of proteins. Human butyrylcholinesterase (BChE) is a highly sialylated, tetrameric serum protein, investigated as a bioscavenger for organophosphorous nerve agents. Expression of recombinant BChE (rBChE) in Nicotiana benthamiana results in accumulation of both monomers as well as assembled oligomers. In particular, we show here that co‐expression of BChE with a novel gene‐stacking vector, carrying six mammalian genes necessary for in planta protein sialylation, resulted in the generation of rBChE decorated with sialylated N‐glycans. The N‐glycosylation profile of monomeric rBChE secreted to the apoplast largely resembles the plasma‐derived orthologue. In contrast, rBChE purified from total soluble protein extracts was decorated with a significant portion of ER‐typical oligomannosidic structures. Biochemical analyses and live‐cell imaging experiments indicated that impaired N‐glycan processing is due to aberrant deposition of rBChE oligomers in the endoplasmic reticulum or endoplasmic‐reticulum‐derived compartments. In summary, we show the assembly of rBChE multimers, however, also points to the need for in‐depth studies to explain the unexpected subcellular targeting of oligomeric BChE in plants.
Publikation

Werner, S.; Engler, C.; Weber, E.; Gruetzner, R.; Marillonnet, S.; Fast track assembly of multigene constructs using Golden Gate cloning and the MoClo system Bioengineered 3, 38-43, (2012) DOI: 10.4161/bbug.3.1.18223

Recent progress in the field of synthetic biology has led to the creation of cells containing synthetic genomes. Although these first synthetic organisms contained copies of natural genomes, future work will be directed toward engineering of organisms with modified genomes and novel phenotypes. Much work, however, remains to be done to be able to routinely engineer novel biological functions. As a tool that will be useful for such purpose, we have recently developed a modular cloning system (MoClo) that allows high throughput assembly of multiple genetic elements. We present here new features of this cloning system that allow to increase the speed of assembly of multigene constructs. As an example, 68 DNA fragments encoding basic genetic elements were assembled using three one-pot cloning steps, resulting in a 50 kb construct containing 17 eukaryotic transcription units. This cloning system should be useful for generating the multiple construct variants that will be required for developing gene networks encoding novel functions, and fine-tuning the expression levels of the various genes involved.
Publikation

Weber, E.; Gruetzner, R.; Werner, S.; Engler, C.; Marillonnet, S.; Assembly of Designer TAL Effectors by Golden Gate Cloning PLOS ONE 6, e19722, (2011) DOI: 10.1371/journal.pone.0019722

Generation of customized DNA binding domains targeting unique sequences in complex genomes is crucial for many biotechnological applications. The recently described DNA binding domain of the transcription activator-like effectors (TALEs) from Xanthomonas consists of a series of repeats arranged in tandem, each repeat binding a nucleotide of the target sequence. We present here a strategy for engineering of TALE proteins with novel DNA binding specificities based on the 17.5 repeat-containing AvrBs3 TALE as a scaffold. For each of the 17 full repeats, four module types were generated, each with a distinct base preference. Using this set of 68 repeat modules, recognition domains for any 17 nucleotide DNA target sequence of choice can be constructed by assembling selected modules in a defined linear order. Assembly is performed in two successive one-pot cloning steps using the Golden Gate cloning method that allows seamless fusion of multiple DNA fragments. Applying this strategy, we assembled designer TALEs with new target specificities and tested their function in vivo.
Publikation

Weber, E.; Engler, C.; Gruetzner, R.; Werner, S.; Marillonnet, S.; A Modular Cloning System for Standardized Assembly of Multigene Constructs PLOS ONE 6, e16765, (2011) DOI: 10.1371/journal.pone.0016765

The field of synthetic biology promises to revolutionize biotechnology through the design of organisms with novel phenotypes useful for medicine, agriculture and industry. However, a limiting factor is the ability of current methods to assemble complex DNA molecules encoding multiple genetic elements in various predefined arrangements. We present here a hierarchical modular cloning system that allows the creation at will and with high efficiency of any eukaryotic multigene construct, starting from libraries of defined and validated basic modules containing regulatory and coding sequences. This system is based on the ability of type IIS restriction enzymes to assemble multiple DNA fragments in a defined linear order. We constructed a 33 kb DNA molecule containing 11 transcription units made from 44 individual basic modules in only three successive cloning steps. This modular cloning (MoClo) system can be readily automated and will be extremely useful for applications such as gene stacking and metabolic engineering.
IPB Mainnav Search