zur Suche springenzur Navigation springenzum Inhalt springen

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 3 von 3.

Publikation

Thieme, F.; Engler, C.; Kandzia, R.; Marillonnet, S.; Quick and Clean Cloning: A Ligation-Independent Cloning Strategy for Selective Cloning of Specific PCR Products from Non-Specific Mixes PLOS ONE 6, e20556, (2011) DOI: 10.1371/journal.pone.0020556

We have developed an efficient strategy for cloning of PCR products that contain an unknown region flanked by a known sequence. As with ligation-independent cloning, the strategy is based on homology between sequences present in both the vector and the insert. However, in contrast to ligation-independent cloning, the cloning vector has homology with only one of the two primers used for amplification of the insert. The other side of the linearized cloning vector has homology with a sequence present in the insert, but nested and non-overlapping with the gene-specific primer used for amplification. Since only specific products contain this sequence, but none of the non-specific products, only specific products can be cloned. Cloning is performed using a one-step reaction that only requires incubation for 10 minutes at room temperature in the presence of T4 DNA polymerase to generate single-stranded extensions at the ends of the vector and insert. The reaction mix is then directly transformed into E. coli where the annealed vector-insert complex is repaired and ligated. We have tested this method, which we call quick and clean cloning (QC cloning), for cloning of the variable regions of immunoglobulins expressed in non-Hodgkin lymphoma tumor samples. This method can also be applied to identify the flanking sequence of DNA elements such as T-DNA or transposon insertions, or be used for cloning of any PCR product with high specificity.
Publikation

Engler, C.; Gruetzner, R.; Kandzia, R.; Marillonnet, S.; Golden Gate Shuffling: A One-Pot DNA Shuffling Method Based on Type IIs Restriction Enzymes PLOS ONE 4, e5553, (2009) DOI: 10.1371/journal.pone.0005553

We have developed a protocol to assemble in one step and one tube at least nine separate DNA fragments together into an acceptor vector, with 90% of recombinant clones obtained containing the desired construct. This protocol is based on the use of type IIs restriction enzymes and is performed by simply subjecting a mix of 10 undigested input plasmids (nine insert plasmids and the acceptor vector) to a restriction-ligation and transforming the resulting mix in competent cells. The efficiency of this protocol allows generating libraries of recombinant genes by combining in one reaction several fragment sets prepared from different parental templates. As an example, we have applied this strategy for shuffling of trypsinogen from three parental templates (bovine cationic trypsinogen, bovine anionic trypsinogen and human cationic trypsinogen) each divided in 9 separate modules. We show that one round of shuffling using the 27 trypsinogen entry plasmids can easily produce the 19,683 different possible combinations in one single restriction-ligation and that expression screening of a subset of the library allows identification of variants that can lead to higher expression levels of trypsin activity. This protocol, that we call ‘Golden Gate shuffling’, is robust, simple and efficient, can be performed with templates that have no homology, and can be combined with other shuffling protocols in order to introduce any variation in any part of a given gene.
Publikation

Engler, C.; Kandzia, R.; Marillonnet, S.; A One Pot, One Step, Precision Cloning Method with High Throughput Capability PLOS ONE 3, e3647, (2008) DOI: 10.1371/journal.pone.0003647

Current cloning technologies based on site-specific recombination are efficient, simple to use, and flexible, but have the drawback of leaving recombination site sequences in the final construct, adding an extra 8 to 13 amino acids to the expressed protein. We have devised a simple and rapid subcloning strategy to transfer any DNA fragment of interest from an entry clone into an expression vector, without this shortcoming. The strategy is based on the use of type IIs restriction enzymes, which cut outside of their recognition sequence. With proper design of the cleavage sites, two fragments cut by type IIs restriction enzymes can be ligated into a product lacking the original restriction site. Based on this property, a cloning strategy called ‘Golden Gate’ cloning was devised that allows to obtain in one tube and one step close to one hundred percent correct recombinant plasmids after just a 5 minute restriction-ligation. This method is therefore as efficient as currently used recombination-based cloning technologies but yields recombinant plasmids that do not contain unwanted sequences in the final construct, thus providing precision for this fundamental process of genetic manipulation.
IPB Mainnav Search