zur Suche springenzur Navigation springenzum Inhalt springen

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 31.

Publikation

Wolfram, K.; Schmidt, J.; Wray, V.; Milkowski, C.; Schliemann, W.; Strack, D.; Profiling of phenylpropanoids in transgenic low-sinapine oilseed rape (Brassica napus) Phytochemistry 71, 1076-1084, (2010) DOI: 10.1016/j.phytochem.2010.04.007

A dsRNAi approach silencing a key enzyme of sinapate ester biosynthesis (UDP-glucose:sinapate glucosyltransferase, encoded by the UGT84A9 gene) in oilseed rape (Brassica napus) seeds was performed to reduce the anti-nutritive properties of the seeds by lowering the content of the major seed component sinapine (sinapoylcholine) and various minor sinapate esters. The transgenic seeds have been produced so far to the T6 generation and revealed a steady suppression of sinapate ester accumulation. HPLC analysis of the wild-type and transgenic seeds revealed, as in the previous generations, marked alterations of the sinapate ester pattern of the transformed seeds. Besides strong reduction of the amount of the known sinapate esters, HPLC analysis revealed unexpectedly the appearance of several minor hitherto unknown rapeseed constituents. These compounds were isolated and identified by mass spectrometric and NMR spectroscopic analyses. Structures of 11 components were elucidated to be 4-O-glucosides of syringate, caffeyl alcohol and its 7,8-dihydro derivative as well as of sinapate and sinapine, along with sinapoylated kaempferol glycosides, a hexoside of a cyclic spermidine alkaloid and a sinapine derivative with an ether-bridge to a C6–C3-unit. These results indicate a strong impact of the transgenic approach on the metabolic network of phenylpropanoids in B. napus seeds. Silencing of UGT84A9 gene expression disrupt the metabolic flow through sinapoylglucose and alters the amounts and nature of the phenylpropanoid endproducts.
Publikation

Kopycki, J. G.; Stubbs, M. T.; Brandt, W.; Hagemann, M.; Porzel, A.; Schmidt, J.; Schliemann, W.; Zenk, M. H.; Vogt, T.; Functional and Structural Characterization of a Cation-dependent O-Methyltransferase from the Cyanobacterium Synechocystis sp. Strain PCC 6803 J. Biol. Chem. 283, 20888-20896, (2008) DOI: 10.1074/jbc.M801943200

The coding sequence of the cyanobacterium Synechocystis sp. strain PCC 6803 slr0095 gene was cloned and functionally expressed in Escherichia coli. The corresponding enzyme was classified as a cation- and S-adenosyl-l-methionine-dependent O-methyltransferase (SynOMT), consistent with considerable amino acid sequence identities to eukaryotic O-methyltransferases (OMTs). The substrate specificity of SynOMT was similar with those of plant and mammalian CCoAOMT-like proteins accepting a variety of hydroxycinnamic acids and flavonoids as substrates. In contrast to the known mammalian and plant enzymes, which exclusively methylate the meta-hydroxyl position of aromatic di- and trihydroxy systems, Syn-OMT also methylates the para-position of hydroxycinnamic acids like 5-hydroxyferulic and 3,4,5-trihydroxycinnamic acid, resulting in the formation of novel compounds. The x-ray structure of SynOMT indicates that the active site allows for two alternative orientations of the hydroxylated substrates in comparison to the active sites of animal and plant enzymes, consistent with the observed preferred para-methylation and position promiscuity. Lys3 close to the N terminus of the recombinant protein appears to play a key role in the activity of the enzyme. The possible implications of these results with respect to modifications of precursors of polymers like lignin are discussed.
Publikation

Fellenberg, C.; Milkowski, C.; Hause, B.; Lange, P.-R.; Böttcher, C.; Schmidt, J.; Vogt, T.; Tapetum-specific location of a cation-dependent O-methyltransferase in Arabidopsis thaliana Plant J. 56, 132-145, (2008) DOI: 10.1111/j.1365-313X.2008.03576.x

Cation‐ and S ‐adenosyl‐l ‐methionine (AdoMet)‐dependent plant natural product methyltransferases are referred to as CCoAOMTs because of their preferred substrate, caffeoyl coenzyme A (CCoA). The enzymes are encoded by a small family of genes, some of which with a proven role in lignin monomer biosynthesis. In Arabidopsis thaliana individual members of this gene family are temporally and spatially regulated. The gene At1g67990 is specifically expressed in flower buds, and is not detected in any other organ, such as roots, leaves or stems. Several lines of evidence indicate that the At1g67990 transcript is located in the flower buds, whereas the corresponding CCoAOMT‐like protein, termed AtTSM1, is located exclusively in the tapetum of developing stamen. Flowers of At1g67990 RNAi‐suppressed plants are characterized by a distinct flower chemotype with severely reduced levels of the N  ′,N  ′′‐ bis‐(5‐hydroxyferuloyl)‐N  ′′′‐sinapoylspermidine compensated for by N1 ,N5 ,N10 ‐tris‐(5‐hydroxyferuloyl)spermidine derivative, which is characterized by the lack of a single methyl group in the sinapoyl moiety. This severe change is consistent with the observed product profile of AtTSM1 for aromatic phenylpropanoids. Heterologous expression of the recombinant protein shows the highest activity towards a series of caffeic acid esters, but 5‐hydroxyferuloyl spermidine conjugates are also accepted substrates. The in vitro substrate specificity and the in vivo RNAi‐mediated suppression data of the corresponding gene suggest a role of this cation‐dependent CCoAOMT‐like protein in the stamen/pollen development of A. thaliana .
Publikation

Schliemann, W.; Schneider, B.; Wray, V.; Schmidt, J.; Nimtz, M.; Porzel, A.; Böhm, H.; Flavonols and an indole alkaloid skeleton bearing identical acylated glycosidic groups from yellow petals of Papaver nudicaule Phytochemistry 67, 191-201, (2006) DOI: 10.1016/j.phytochem.2005.11.002

From yellow petals of Iceland poppy, besides the known flavonoid gossypitrin, seven kaempferol derivatives were isolated. In addition to kaempferol 3-O-β-sophoroside and kaempferol 3-O-β-sophoroside-7-O-β-glucoside, known from other plants, the mono- and dimalonyl conjugates of the latter were identified by MS and NMR spectroscopy. Structure analyses of a set of co-occurring pigments, the nudicaulins, revealed that they have the identical acylated glycoside moieties attached to a pentacyclic indole alkaloid skeleton for which the structure of 19-(4-hydroxyphenyl)-10H-1,10-ethenochromeno[2,3-b]indole-6,8,18-triol was deduced from MS and NMR as well as chemical and chiroptical methods.
Publikation

Schliemann, W.; Schmidt, J.; Nimtz, M.; Wray, V.; Fester, T.; Strack, D.; Erratum to “Accumulation of apocarotenoids in mycorrhizal roots of Ornithogalum umbellatum” [Phytochem. 67 (2006) 1196–1205] Phytochemistry 67, 2090, (2006) DOI: 10.1016/j.phytochem.2006.07.018

0
Publikation

Schliemann, W.; Schmidt, J.; Nimtz, M.; Wray, V.; Fester, T.; Strack, D.; Accumulation of apocarotenoids in mycorrhizal roots of Ornithogalum umbellatum Phytochemistry 67, 1196-1205, (2006) DOI: 10.1016/j.phytochem.2006.05.005

Colonization of roots of Ornithogalum umbellatum by the arbuscular mycorrhizal fungus Glomus intraradices induced the accumulation of different types of apocarotenoids. In addition to the mycorrhiza-specific occurrence of cyclohexenone derivatives and the “yellow pigment” described earlier, free mycorradicin and numerous mycorradicin derivatives were detected in a complex apocarotenoid mixture for the first time. From the accumulation pattern of the mycorradicin derivatives their possible integration into the continuously accumulating “yellow pigment” is suggested. Structure analyses of the cyclohexenone derivatives by MS and NMR revealed that they are mono-, di- and branched triglycosides of blumenol C, 13-hydroxyblumenol C, and 13-nor-5-carboxy-blumenol C, some of which contain terminal rhamnose as sugar moiety.
Publikation

Ziegler, J.; Voigtländer, S.; Schmidt, J.; Kramell, R.; Miersch, O.; Ammer, C.; Gesell, A.; Kutchan, T. M.; Comparative transcript and alkaloid profiling in Papaver species identifies a short chain dehydrogenase/reductase involved in morphine biosynthesis Plant J. 48, 177-192, (2006) DOI: 10.1111/j.1365-313X.2006.02860.x

Plants of the order Ranunculales, especially members of the species Papaver , accumulate a large variety of benzylisoquinoline alkaloids with about 2500 structures, but only the opium poppy (Papaver somniferum ) and Papaver setigerum are able to produce the analgesic and narcotic morphine and the antitussive codeine. In this study, we investigated the molecular basis for this exceptional biosynthetic capability by comparison of alkaloid profiles with gene expression profiles between 16 different Papaver species. Out of 2000 expressed sequence tags obtained from P. somniferum , 69 show increased expression in morphinan alkaloid‐containing species. One of these cDNAs, exhibiting an expression pattern very similar to previously isolated cDNAs coding for enzymes in benzylisoquinoline biosynthesis, showed the highest amino acid identity to reductases in menthol biosynthesis. After overexpression, the protein encoded by this cDNA reduced the keto group of salutaridine yielding salutaridinol, an intermediate in morphine biosynthesis. The stereoisomer 7‐epi ‐salutaridinol was not formed. Based on its similarities to a previously purified protein from P. somniferum with respect to the high substrate specificity, molecular mass and kinetic data, the recombinant protein was identified as salutaridine reductase (SalR; EC 1.1.1.248). Unlike codeinone reductase, an enzyme acting later in the pathway that catalyses the reduction of a keto group and which belongs to the family of the aldo‐keto reductases, the cDNA identified in this study as SalR belongs to the family of short chain dehydrogenases/reductases and is related to reductases in monoterpene metabolism.
Publikation

Baumert, A.; Milkowski, C.; Schmidt, J.; Nimtz, M.; Wray, V.; Strack, D.; Formation of a complex pattern of sinapate esters in Brassica napus seeds, catalyzed by enzymes of a serine carboxypeptidase-like acyltransferase family? Phytochemistry 66, 1334-1345, (2005) DOI: 10.1016/j.phytochem.2005.02.031

Members of the Brassicaceae accumulate complex patterns of sinapate esters, as shown in this communication with seeds of oilseed rape (Brassica napus). Fifteen seed constituents were isolated and identified by a combination of high-field NMR spectroscopy and high resolution electrospray ionisation mass spectrometry. These include glucose, gentiobiose and kaempferol glycoside esters as well as sinapine (sinapoylcholine), sinapoylmalate and an unusual cyclic spermidine amide. One of the glucose esters (1,6-di-O-sinapoylglucose), two gentiobiose esters (1-O-caffeoylgentiobiose and 1,2,6′-tri-O-sinapoylgentiobiose) and two kaempferol conjugates [4′-(6-O-sinapoylglucoside)-3,7-di-O-glucoside and 3-O-sophoroside-7-O-(2-O-sinapoylglucoside)] seem to be new plant products. Serine carboxypeptidase-like (SCPL) acyltransferases catalyze the formation of sinapine and sinapoylmalate accepting 1-O-β-acetal esters (1-O-β-glucose esters) as acyl donors. To address the question whether the formation of other components of the complex pattern of the sinapate esters in B. napus seeds is catalyzed via 1-O-sinapoyl-β-glucose, we performed a seed-specific dsRNAi-based suppression of the sinapate glucosyltransferase gene (BnSGT1) expression. In seeds of BnSGT1-suppressing plants the amount of sinapoylglucose decreased below the HPLC detection limit resulting in turn in the disappearance or marked decrease of all the other sinapate esters, indicating that formation of the complex pattern of these esters in B. napus seeds is dependent on sinapoylglucose. This gives rise to the assumption that enzymes of an SCPL acyltransferase family catalyze the appropriate transfer reactions to synthesize the accumulating esters.
Publikation

Kramell, R.; Schmidt, J.; Herrmann, G.; Schliemann, W.; N-(Jasmonoyl)tyrosine-Derived Compounds from Flowers of Broad Beans (Vicia faba) J. Nat. Prod. 68, 1345-1349, (2005) DOI: 10.1021/np0501482

Two new amide-linked conjugates of jasmonic acid, N-[(3R,7R)-(−)-jasmonoyl]-(S)-dopa (3) and N-[(3R,7R)-(−)-jasmonoyl]-dopamine (5), were isolated in addition to the known compound N-[(3R,7R)-(−)-jasmonoyl]-(S)-tyrosine (2) from the methanolic extract of flowers of broad bean (Vicia faba). Their structures were proposed on the basis of spectroscopic data (LC-MS/MS) and chromatographic properties on reversed and chiral phases and confirmed by partial syntheses. Furthermore, tyrosine conjugates of two cucurbic acid isomers (7, 8) were detected and characterized by LC-MS. Crude enzyme preparations from flowers of V. faba hydroxylated both (±)-2 and N-[(3R,7R/3S,7S)-(−)-jasmonoyl]tyramine [(±)-4] to (±)-3 and (±)-5, respectively, suggesting a possible biosynthetic relationship. In addition, a commercial tyrosinase (mushroom) and a tyrosinase-containing extract from hairy roots of red beet exhibited the same catalytic properties, but with different substrate specificities. The conjugates (±)-2, (±)-3, (±)-4, and (±)-5 exhibited in a bioassay low activity to elicit alkaloid formation in comparison to free (±)-jasmonic acid [(±)-1].
Publikation

Cacace, S.; Schröder, G.; Wehinger, E.; Strack, D.; Schmidt, J.; Schröder, J.; A flavonol O-methyltransferase from Catharanthus roseus performing two sequential methylations Phytochemistry 62, 127-137, (2003) DOI: 10.1016/S0031-9422(02)00483-1

Protein extracts from dark-grown cell suspension cultures of Catharanthus roseus (Madagascar periwinkle) contained several O-methyltransferase (OMT) activities, including the 16-hydroxytabersonine O-methyltransferase (16HT-OMT) in indole alkaloid biosynthesis. This enzyme was enriched through several purification steps, including affinity chromatography on adenosine agarose. SDS-PAGE of the purified protein preparation revealed a protein band at the size expected for plant OMTs (38–43 kDa). Mass spectrometry indicated two dominant protein species of similar mass in this band, and sequences of tryptic peptides showed similarities to known OMTs. Homology-based RT-PCR identified cDNAs for four new OMTs. Two of these cDNAs (CrOMT2 and CrOMT4) encoded the proteins dominant in the preparation enriched for 16HT-OMT. The proteins were closely related (73% identity), but both shared only 48-53% identity with the closest relatives found in the public databases. The enzyme functions were investigated with purified recombinant proteins after cDNA expression in Escherichia coli. Unexpectedly, both proteins had no detectable 16HT-OMT activity, and CrOMT4 was inactive with all substrates investigated. CrOMT2 was identified as a flavonoid OMT that was expressed in dark-grown cell cultures and copurified with 16HT-OMT. It represented a new type of OMT that performs two sequential methylations at the 3′- and 5′-positions of the B-ring in myricetin (flavonol) and dihydromyricetin (dihydroflavonol). The resulting methylation pattern is characteristic for C. roseus flavonol glycosides and anthocyanins, and it is proposed that CrOMT2 is involved in their biosynthesis.Purification and molecular characterization of an unusual flavonoid O-dimethyltransferase that explains the 3′,5′-methylation in flavonols and anthocyanins of Madagascar periwinkle.
IPB Mainnav Search