zur Suche springenzur Navigation springenzum Inhalt springen

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 2 von 2.

Publikation

Binarová, P.; Cenklová, V.; Hause, B.; Kubátová, E.; Lysák, M.; Doležel, J.; Bögre, L.; Dráber, P.; Nuclear γ-Tubulin during Acentriolar Plant Mitosis Plant Cell 12, 433-442, (2000) DOI: 10.1105/tpc.12.3.433

Neither the molecular mechanism by which plant microtubules nucleate in the cytoplasm nor the organization of plant mitotic spindles, which lack centrosomes, is well understood. Here, using immunolocalization and cell fractionation techniques, we provide evidence that γ-tubulin, a universal component of microtubule organizing centers, is present in both the cytoplasm and the nucleus of plant cells. The amount of γ-tubulin in nuclei increased during the G2 phase, when cells are synchronized or sorted for particular phases of the cell cycle. γ-Tubulin appeared on prekinetochores before preprophase arrest caused by inhibition of the cyclin-dependent kinase and before prekinetochore labeling of the mitosis-specific phosphoepitope MPM2. The association of nuclear γ-tubulin with chromatin displayed moderately strong affinity, as shown by its release after DNase treatment and by using extraction experiments. Subcellular compartmentalization of γ-tubulin might be an important factor in the organization of plant-specific microtubule arrays and acentriolar mitotic spindles.
Publikation

Binarová, P.; Hause, B.; Doležel, J.; Dráber, P.; Association of γ-tubulin with kinetochore/centromeric region of plant chromosomes Plant J. 14, 751-757, (1998) DOI: 10.1046/j.1365-313x.1998.00166.x

Monoclonal antibodies raised against a phylogenetically conserved peptide from the C‐terminal domain of γ‐tubulin molecule were used for immunofluorescence detection of γ‐tubulin in acentriolar mitotic spindles of plant cells. The antibodies stained kinetochore fibres along their whole length, including the close vicinity of kinetochores. After microtubule disassembly by the antimicrotubular drugs amiprophos‐methyl, oryzalin and colchicine, γ‐tubulin was found on remnants of kinetochore fibres attached to chromosomes. In cells recovering from the amiprophos‐methyl treatment, γ‐tubulin was localized with the re‐growing kinetochore microtubule fibres nucleated or captured by kinetochore/centromeric regions. On isolated chromosomes, γ‐tubulin co‐localized with α‐tubulin in the kinetochore/centromeric region. The data presented suggest that in acentriolar higher plant cells γ‐tubulin might be directly or indirectly involved in modulation and/or stabilization of kinetochore–microtubule interactions.
IPB Mainnav Search