zur Suche springenzur Navigation springenzum Inhalt springen

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 10.

Publikation

Scheler, U.; Brandt, W.; Porzel, A.; Rothe, K.; Manzano, D.; Božić, D.; Papaefthimiou, D.; Balcke, G. U.; Henning, A.; Lohse, S.; Marillonnet, S.; Kanellis, A. K.; Ferrer, A.; Tissier, A.; Elucidation of the biosynthesis of carnosic acid and its reconstitution in yeast Nat. Commun. 7, 12942, (2016) DOI: 10.1038/ncomms12942

Rosemary extracts containing the phenolic diterpenes carnosic acid and its derivative carnosol are approved food additives used in an increasingly wide range of products to enhance shelf-life, thanks to their high anti-oxidant activity. We describe here the elucidation of the complete biosynthetic pathway of carnosic acid and its reconstitution in yeast cells. Cytochrome P450 oxygenases (CYP76AH22-24) from Rosmarinus officinalis and Salvia fruticosa already characterized as ferruginol synthases are also able to produce 11-hydroxyferruginol. Modelling-based mutagenesis of three amino acids in the related ferruginol synthase (CYP76AH1) from S. miltiorrhiza is sufficient to convert it to a 11-hydroxyferruginol synthase (HFS). The three sequential C20 oxidations for the conversion of 11-hydroxyferruginol to carnosic acid are catalysed by the related CYP76AK6-8. The availability of the genes for the biosynthesis of carnosic acid opens opportunities for the metabolic engineering of phenolic diterpenes, a class of compounds with potent anti-oxidant, anti-inflammatory and anti-tumour activities.
Publikation

Paudel, G.; Bilova, T.; Schmidt, R.; Greifenhagen, U.; Berger, R.; Tarakhovskaya, E.; Stöckhardt, S.; Balcke, G. U.; Humbeck, K.; Brandt, W.; Sinz, A.; Vogt, T.; Birkemeyer, C.; Wessjohann, L.; Frolov, A.; Osmotic stress is accompanied by protein glycation in Arabidopsis thaliana J. Exp. Bot. 67, 6283-6295, (2016) DOI: 10.1093/jxb/erw395

Among the environmental alterations accompanying oncoming climate changes, drought is the most important factor influencing crop plant productivity. In plants, water deficit ultimately results in the development of oxidative stress and accumulation of osmolytes (e.g. amino acids and carbohydrates) in all tissues. Up-regulation of sugar biosynthesis in parallel to the increasing overproduction of reactive oxygen species (ROS) might enhance protein glycation, i.e. interaction of carbonyl compounds, reducing sugars and α-dicarbonyls with lysyl and arginyl side-chains yielding early (Amadori and Heyns compounds) and advanced glycation end-products (AGEs). Although the constitutive plant protein glycation patterns were characterized recently, the effects of environmental stress on AGE formation are unknown so far. To fill this gap, we present here a comprehensive in-depth study of the changes in Arabidopsis thaliana advanced glycated proteome related to osmotic stress. A 3 d application of osmotic stress revealed 31 stress-specifically and 12 differentially AGE-modified proteins, representing altogether 56 advanced glycation sites. Based on proteomic and metabolomic results, in combination with biochemical, enzymatic and gene expression analysis, we propose monosaccharide autoxidation as the main stress-related glycation mechanism, and glyoxal as the major glycation agent in plants subjected to drought.
Publikation

Jud, W.; Fischer, L.; Canaval, E.; Wohlfahrt, G.; Tissier, A.; Hansel, A.; Plant surface reactions: an opportunistic ozone defence mechanism impacting atmospheric chemistry Atmos. Chem. Phys. 16, 277-292, (2016) DOI: 10.5194/acp-16-277-2016

Elevated tropospheric ozone concentrations are considered a toxic threat to plants, responsible for global crop losses with associated economic costs of several billion dollars per year. Plant injuries have been linked to the uptake of ozone through stomatal pores and oxidative damage of the internal leaf tissue. But a striking question remains: can surface reactions limit the stomatal uptake of ozone and therefore reduce its detrimental effects to plants?In this laboratory study we could show that semi-volatile organic compounds exuded by the glandular trichomes of different Nicotiana tabacum varieties are an efficient ozone sink at the plant surface. In our experiments, different diterpenoid compounds were responsible for a strongly variety-dependent ozone uptake of plants under dark conditions, when stomatal pores are almost closed. Surface reactions of ozone were accompanied by a prompt release of oxygenated volatile organic compounds, which could be linked to the corresponding precursor compounds: ozonolysis cis-abienol (C20H34O) – a diterpenoid with two exocyclic double bonds – caused emissions of formaldehyde (HCHO) and methyl vinyl ketone (C4H6O). The ring-structured cembratrien-diols (C20H34O2) with three endocyclic double bonds need at least two ozonolysis steps to form volatile carbonyls such as 4-oxopentanal (C5H8O2), which we could observe in the gas phase, too.Fluid dynamic calculations were used to model ozone distribution in the diffusion-limited leaf boundary layer under daylight conditions. In the case of an ozone-reactive leaf surface, ozone gradients in the vicinity of stomatal pores are changed in such a way that the ozone flux through the open stomata is strongly reduced.Our results show that unsaturated semi-volatile compounds at the plant surface should be considered as a source of oxygenated volatile organic compounds, impacting gas phase chemistry, as well as efficient ozone sink improving the ozone tolerance of plants.
Publikation

Bilova, T.; Lukasheva, E.; Brauch, D.; Greifenhagen, U.; Paudel, G.; Tarakhovskaya, E.; Frolova, N.; Mittasch, J.; Balcke, G. U.; Tissier, A.; Osmolovskaya, N.; Vogt, T.; Wessjohann, L. A.; Birkemeyer, C.; Milkowski, C.; Frolov, A.; A Snapshot of the Plant Glycated Proteome: STRUCTURAL, FUNCTIONAL, AND MECHANISTIC ASPECTS J. Biol. Chem. 291, 7621-7636, (2016) DOI: 10.1074/jbc.M115.678581

Glycation is the reaction of carbonyl compounds (reducing sugars and α-dicarbonyls) with amino acids, lipids, and proteins, yielding early and advanced glycation end products (AGEs). The AGEs can be formed via degradation of early glycation intermediates (glycoxidation) and by interaction with the products of monosaccharide autoxidation (autoxidative glycosylation). Although formation of these potentially deleterious compounds is well characterized in animal systems and thermally treated foods, only a little information about advanced glycation in plants is available. Thus, the knowledge of the plant AGE patterns and the underlying pathways of their formation are completely missing. To fill this gap, we describe the AGE-modified proteome of Brassica napus and characterize individual sites of advanced glycation by the methods of liquid chromatography-based bottom-up proteomics. The modification patterns were complex but reproducible: 789 AGE-modified peptides in 772 proteins were detected in two independent experiments. In contrast, only 168 polypeptides contained early glycated lysines, which did not resemble the sites of advanced glycation. Similar observations were made with Arabidopsis thaliana. The absence of the early glycated precursors of the AGE-modified protein residues indicated autoxidative glycosylation, but not glycoxidation, as the major pathway of AGE formation. To prove this assumption and to identify the potential modifying agents, we estimated the reactivity and glycative potential of plant-derived sugars using a model peptide approach and liquid chromatography-mass spectrometry-based techniques. Evaluation of these data sets together with the assessed tissue carbohydrate contents revealed dihydroxyacetone phosphate, glyceraldehyde 3-phosphate, ribulose, erythrose, and sucrose as potential precursors of plant AGEs.
Publikation

Bergau, N.; Navarette Santos, A.; Henning, A.; Balcke, G. U.; Tissier, A.; Autofluorescence as a Signal to Sort Developing Glandular Trichomes by Flow Cytometry Front. Plant Sci. 7, 949, (2016) DOI: 10.3389/fpls.2016.00949

The industrial relevance of a number of metabolites produced in plant glandular trichomes (GTs) has spurred research on these specialized organs for a number of years. Most of the research, however, has focused on the elucidation of secondary metabolite pathways and comparatively little has been undertaken on the development and differentiation of GTs. One way to gain insight into these developmental processes is to generate stage-specific transcriptome and metabolome data. The difficulty for this resides in the isolation of early stages of development of the GTs. Here we describe a method for the separation and isolation of intact young and mature type VI trichomes from the wild tomato species Solanum habrochaites. The final and key step of the method uses cell sorting based on distinct autofluorescence signals of the young and mature trichomes. We demonstrate that sorting by flow cytometry allows recovering pure fractions of young and mature trichomes. Furthermore, we show that the sorted trichomes can be used for transcript and metabolite analyses. Because many plant tissues or cells have distinct autofluorescence components, the principles of this method can be generally applicable for the isolation of specific cell types without prior labeling.
Publikation

Treutler, H.; Tsugawa, H.; Porzel, A.; Gorzolka, K.; Tissier, A.; Neumann, S.; Balcke, G. U.; Discovering Regulated Metabolite Families in Untargeted Metabolomics Studies Anal. Chem. 88, 8082-8090, (2016) DOI: 10.1021/acs.analchem.6b01569

The identification of metabolites by mass spectrometry constitutes a major bottleneck which considerably limits the throughput of metabolomics studies in biomedical or plant research. Here, we present a novel approach to analyze metabolomics data from untargeted, data-independent LC-MS/MS measurements. By integrated analysis of MS1 abundances and MS/MS spectra, the identification of regulated metabolite families is achieved. This approach offers a global view on metabolic regulation in comparative metabolomics. We implemented our approach in the web application “MetFamily”, which is freely available at http://msbi.ipb-halle.de/MetFamily/. MetFamily provides a dynamic link between the patterns based on MS1-signal intensity and the corresponding structural similarity at the MS/MS level. Structurally related metabolites are annotated as metabolite families based on a hierarchical cluster analysis of measured MS/MS spectra. Joint examination with principal component analysis of MS1 patterns, where this annotation is preserved in the loadings, facilitates the interpretation of comparative metabolomics data at the level of metabolite families. As a proof of concept, we identified two trichome-specific metabolite families from wild-type tomato Solanum habrochaites LA1777 in a fully unsupervised manner and validated our findings based on earlier publications and with NMR.
Publikation

Taylor, I.; Wang, Y.; Seitz, K.; Baer, J.; Bennewitz, S.; Mooney, B. P.; Walker, J. C.; Analysis of Phosphorylation of the Receptor-Like Protein Kinase HAESA during Arabidopsis Floral Abscission PLOS ONE 11, e0147203, (2016) DOI: 10.1371/journal.pone.0147203

Receptor-like protein kinases (RLKs) are the largest family of plant transmembrane signaling proteins. Here we present functional analysis of HAESA, an RLK that regulates floral organ abscission in Arabidopsis. Through in vitro and in vivo analysis of HAE phosphorylation, we provide evidence that a conserved phosphorylation site on a region of the HAE protein kinase domain known as the activation segment positively regulates HAE activity. Additional analysis has identified another putative activation segment phosphorylation site common to multiple RLKs that potentially modulates HAE activity. Comparative analysis suggests that phosphorylation of this second activation segment residue is an RLK specific adaptation that may regulate protein kinase activity and substrate specificity. A growing number of RLKs have been shown to exhibit biologically relevant dual specificity toward serine/threonine and tyrosine residues, but the mechanisms underlying dual specificity of RLKs are not well understood. We show that a phospho-mimetic mutant of both HAE activation segment residues exhibits enhanced tyrosine auto-phosphorylation in vitro, indicating phosphorylation of this residue may contribute to dual specificity of HAE. These results add to an emerging framework for understanding the mechanisms and evolution of regulation of RLK activity and substrate specificity.
Publikation

Hettwer, K.; Böttcher, C.; Frolov, A.; Mittasch, J.; Albert, A.; von Roepenack-Lahaye, E.; Strack, D.; Milkowski, C.; Dynamic metabolic changes in seeds and seedlings of Brassica napus (oilseed rape) suppressing UGT84A9 reveal plasticity and molecular regulation of the phenylpropanoid pathway Phytochemistry 124, 46-57, (2016) DOI: 10.1016/j.phytochem.2016.01.014

In Brassica napus, suppression of the key biosynthetic enzyme UDP-glucose:sinapic acid glucosyltransferase (UGT84A9) inhibits the biosynthesis of sinapine (sinapoylcholine), the major phenolic component of seeds. Based on the accumulation kinetics of a total of 158 compounds (110 secondary and 48 primary metabolites), we investigated how suppression of the major sink pathway of sinapic acid impacts the metabolome of developing seeds and seedlings. In UGT84A9-suppressing (UGT84A9i) lines massive alterations became evident in late stages of seed development affecting the accumulation levels of 58 secondary and 7 primary metabolites. UGT84A9i seeds were characterized by decreased amounts of various hydroxycinnamic acid (HCA) esters, and increased formation of sinapic and syringic acid glycosides. This indicates glycosylation and β-oxidation as metabolic detoxification strategies to bypass intracellular accumulation of sinapic acid. In addition, a net loss of sinapic acid upon UGT84A9 suppression may point to a feedback regulation of HCA biosynthesis. Surprisingly, suppression of UGT84A9 under control of the seed-specific NAPINC promoter was maintained in cotyledons during the first two weeks of seedling development and associated with a reduced and delayed transformation of sinapine into sinapoylmalate. The lack of sinapoylmalate did not interfere with plant fitness under UV-B stress. Increased UV-B radiation triggered the accumulation of quercetin conjugates whereas the sinapoylmalate level was not affected.
Bücher und Buchkapitel

Schreiber, T.; Tissier, A.; Libraries of Synthetic TALE-Activated Promoters: Methods and Applications (O\'Connor, S. E., ed.). Methods Enzymol. 576, 361-378, (2016) DOI: 10.1016/bs.mie.2016.03.004

The discovery of proteins with programmable DNA-binding specificities triggered a whole array of applications in synthetic biology, including genome editing, regulation of transcription, and epigenetic modifications. Among those, transcription activator-like effectors (TALEs) due to their natural function as transcription regulators, are especially well-suited for the development of orthogonal systems for the control of gene expression. We describe here the construction and testing of libraries of synthetic TALE-activated promoters which are under the control of a single TALE with a given DNA-binding specificity. These libraries consist of a fixed DNA-binding element for the TALE, a TATA box, and variable sequences of 19 bases upstream and 43 bases downstream of the DNA-binding element. These libraries were cloned using a Golden Gate cloning strategy making them usable as standard parts in a modular cloning system. The broad range of promoter activities detected and the versatility of these promoter libraries make them valuable tools for applications in the fine-tuning of expression in metabolic engineering projects or in the design and implementation of regulatory circuits.
Bücher und Buchkapitel

Bilova, T.; Greifenhagen, U.; Paudel, G.; Lukasheva, E.; Brauch, D.; Osmolovskaya, N.; Tarakhovskaya, E.; Balcke, G. U.; Tissier, A.; Vogt, T.; Milkowski, C.; Birkemeyer, C.; Wessjohann, L.; Frolov, A.; Glycation of Plant Proteins under Environmental Stress — Methodological Approaches, Potential Mechanisms and Biological Role (Shanker, A. K. & Shanker, C., eds.). 295-316, (2016) DOI: 10.5772/61860

Environmental stress is one of the major factors reducing crop productivity. Due to the oncoming climate changes, the effects of drought and high light on plants play an increasing role in modern agriculture. These changes are accompanied with a progressing contamination of soils with heavy metals. Independent of their nature, environmental alterations result in development of oxidative stress, i.e. increase of reactive oxygen species (ROS) contents, and metabolic adjustment, i.e. accumulation of soluble primary metabolites (amino acids and sugars). However, a simultaneous increase of ROS and sugar concentrations ultimately results in protein glycation, i.e. non-enzymatic interaction of reducing sugars or their degradation products (α-dicarbonyls) with proteins. The eventually resulting advanced glycation end-products (AGEs) are known to be toxic and pro-inflammatory in mammals. Recently, their presence was unambiguously demonstrated in vivo in stressed Arabidopsis thaliana plants. Currently, information on protein targets, modification sites therein, mediators and mechanisms of plant glycation are being intensively studied. In this chapter, we comprehensively review the methodological approaches for plant glycation research and discuss potential mechanisms of AGE formation under stress conditions. On the basis of these patterns and additional in vitro experiments, the pathways and mechanisms of plant glycation can be proposed.
IPB Mainnav Search