TY - JOUR ID - 2428 TI - Partial purification and characterization of UDP-glucose: betanidin 5-O- and 6-O-glucosyltransferases from cell suspension cultures of Dorotheanthus bellidiformis (Burm. f.) N.E.Br. JO - Planta PY - 1996 SP - 244-250 AU - Heuer, S. AU - Vogt, T. AU - Böhm, H. AU - Strack, D. AU - VL - 199 UR - DO - 10.1007/BF00196565 AB - Uridine 5′-diphosphoglucose-dependent glucosyl-transferases (UDP-glucose:betanidin 5-O- and 6-O-glucosyltransferases; 5-GT and 6-GT; EC 2.4.1) catalyze the regiospecific transfer of glucose to the 5- and 6-hydroxy group of betanidin in the formation of betanin and gomphrenin I, respectively. Both GT activities were partially purified from cell suspension cultures of Dorotheanthus bellidiformis (Burm. f.) N.E. Br. Isoelectric focusing of crude protein extracts indicated the presence of three 5-GT isoforms and a single 6-GT form. The 5-GT isoforms were partially separated from each other and completely from the 6-GT. Studies of the glucosyltransferase activities were focused on the major isoform of the 5-GTs and the 6-GT, which displayed the same pH optimum near 7.5 in K-phosphate buffer. A 3- and 2.5-fold enrichment and 11% and 10% recovery of the 5-GT and 6-GT, respectively, were routinely achieved; however, a 3300-fold enrichment of the major 5-GT isoform and a 6-fold enrichment of the 6-GT were also achieved. Both enzymes are monomers and displayed apparent native Mrs near 55 000. The maxima of the reaction temperature were at 50 °C for the 5-GT and at 37°C for the 6-GT with respective apparent energies of activation of 51 and 53 kJ · mol−1. Kinetic studies indicated that the apparent Michaelis constants (apparent K m) of the GTs for one substrate were dependent on the concentration of the second substrate. However, the relationship between the apparent K m values and the dissociation constants (K i) were different; m > K i applies for the 5-GT and K m < K i for the 6-GT activity. Consequently, this results in a predominant formation of betanin at low substrate concentrations, but a predominant formation of gomphrenin I at high substrate concentrations, assuming that both enzymes may compete freely for their substrates. This might explain why we could not observe a correlation between extractable 5-GT and 6-GT activities and the in-vivo accumulation of the respective products from cell-suspension cultures of D. bellidiformis. A2 - C1 - Cell and Metabolic Biology ER -