zur Suche springenzur Navigation springenzum Inhalt springen

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 14.

Publikation

Stehle, F.; Götsch, F.; Wray, V.; Schmidt, J.; Strack, D.; Brandt, W.; Snap-shot of Serine Carboxypeptidase-like Acyltransferase Evolution: The Loss of Conserved Disulphide Bridge is Responsible for the Completion of Neo-functionalization J. Phylogenet. Evol. Biol. 1, 115, (2013) DOI: 10.4172/2329-9002.1000115

In this work, it is shown that the At2g23010 gene product encodes 1-O-sinapoyl-β-glucose:1-O-sinapoyl-β-glucose sinapoyltransferase (SST). In contrast to all other functional characterized acyltransferases, the SST protein is highly specific towards this reaction only, and the substrate specificity was correlated to one amino acid substitution. Detailed sequence analysis revealed the lack of the disulphide bond S1 (C78 and C323 in the SMT (sinapoylglucose:malate sinapoyltransferase), that is in SST C80 and D327). The reconstitution of this disulphide bond led to an enzyme accepting many different substrates including disaccharides. Interestingly, the overall changes within the model structures are not very dramatic, but nevertheless, the enzyme models provide some explanations for the broadened substrate specificity: the reconstitution of the disulphide bond provoked more space within the substrate binding pocket simultaneously avoiding electrostatic repulsion. As the SST sequence of A. lyrata also showed the same mutation, the loss of the disulphide bond should has arisen at least 10 mya ago. A Ka/Ks ratio ≤ 1 supports the hypothesis that the loss of this disulphide bond was rather a specification towards a certain reaction than the beginning of a gene death. At the same time, this is also associated with the fixation in the genome.
Publikation

Wolfram, K.; Schmidt, J.; Wray, V.; Milkowski, C.; Schliemann, W.; Strack, D.; Profiling of phenylpropanoids in transgenic low-sinapine oilseed rape (Brassica napus) Phytochemistry 71, 1076-1084, (2010) DOI: 10.1016/j.phytochem.2010.04.007

A dsRNAi approach silencing a key enzyme of sinapate ester biosynthesis (UDP-glucose:sinapate glucosyltransferase, encoded by the UGT84A9 gene) in oilseed rape (Brassica napus) seeds was performed to reduce the anti-nutritive properties of the seeds by lowering the content of the major seed component sinapine (sinapoylcholine) and various minor sinapate esters. The transgenic seeds have been produced so far to the T6 generation and revealed a steady suppression of sinapate ester accumulation. HPLC analysis of the wild-type and transgenic seeds revealed, as in the previous generations, marked alterations of the sinapate ester pattern of the transformed seeds. Besides strong reduction of the amount of the known sinapate esters, HPLC analysis revealed unexpectedly the appearance of several minor hitherto unknown rapeseed constituents. These compounds were isolated and identified by mass spectrometric and NMR spectroscopic analyses. Structures of 11 components were elucidated to be 4-O-glucosides of syringate, caffeyl alcohol and its 7,8-dihydro derivative as well as of sinapate and sinapine, along with sinapoylated kaempferol glycosides, a hexoside of a cyclic spermidine alkaloid and a sinapine derivative with an ether-bridge to a C6–C3-unit. These results indicate a strong impact of the transgenic approach on the metabolic network of phenylpropanoids in B. napus seeds. Silencing of UGT84A9 gene expression disrupt the metabolic flow through sinapoylglucose and alters the amounts and nature of the phenylpropanoid endproducts.
Publikation

Schliemann, W.; Schneider, B.; Wray, V.; Schmidt, J.; Nimtz, M.; Porzel, A.; Böhm, H.; Flavonols and an indole alkaloid skeleton bearing identical acylated glycosidic groups from yellow petals of Papaver nudicaule Phytochemistry 67, 191-201, (2006) DOI: 10.1016/j.phytochem.2005.11.002

From yellow petals of Iceland poppy, besides the known flavonoid gossypitrin, seven kaempferol derivatives were isolated. In addition to kaempferol 3-O-β-sophoroside and kaempferol 3-O-β-sophoroside-7-O-β-glucoside, known from other plants, the mono- and dimalonyl conjugates of the latter were identified by MS and NMR spectroscopy. Structure analyses of a set of co-occurring pigments, the nudicaulins, revealed that they have the identical acylated glycoside moieties attached to a pentacyclic indole alkaloid skeleton for which the structure of 19-(4-hydroxyphenyl)-10H-1,10-ethenochromeno[2,3-b]indole-6,8,18-triol was deduced from MS and NMR as well as chemical and chiroptical methods.
Publikation

Schliemann, W.; Schmidt, J.; Nimtz, M.; Wray, V.; Fester, T.; Strack, D.; Erratum to “Accumulation of apocarotenoids in mycorrhizal roots of Ornithogalum umbellatum” [Phytochem. 67 (2006) 1196–1205] Phytochemistry 67, 2090, (2006) DOI: 10.1016/j.phytochem.2006.07.018

0
Publikation

Fester, T.; Wray, V.; Nimtz, M.; Strack, D.; Is stimulation of carotenoid biosynthesis in arbuscular mycorrhizal roots a general phenomenon? Phytochemistry 66, 1781-1786, (2005) DOI: 10.1016/j.phytochem.2005.05.009

The identification and quantification of cyclohexenone glycoside derivatives from the model legume Lotus japonicus revealed far higher levels than expected according to the stoichiometric relation to another, already determined carotenoid cleavage product, i.e., mycorradicin. Mycorradicin is responsible for the yellow coloration of many arbuscular mycorrhizal (AM) roots and is usually esterified in a complex way to other compounds. After liberation from such complexes it has been detected in AM roots of many, but not of all plants examined. The non-stoichiometric occurrence of this compound compared with other carotenoid cleavage products suggested that carotenoid biosynthesis might be activated upon mycorrhization even in plant species without detectable levels of mycorradicin. This assumption has been supported by inhibition of a key enzyme of carotenoid biosynthesis (phytoene desaturase) and quantification of the accumulating enzymic substrate (phytoene). Our observations suggest that the activation of carotenoid biosynthesis in AM roots is a general phenomenon and that quantification of mycorradicin is not always a good indicator for this activation.
Publikation

Baumert, A.; Milkowski, C.; Schmidt, J.; Nimtz, M.; Wray, V.; Strack, D.; Formation of a complex pattern of sinapate esters in Brassica napus seeds, catalyzed by enzymes of a serine carboxypeptidase-like acyltransferase family? Phytochemistry 66, 1334-1345, (2005) DOI: 10.1016/j.phytochem.2005.02.031

Members of the Brassicaceae accumulate complex patterns of sinapate esters, as shown in this communication with seeds of oilseed rape (Brassica napus). Fifteen seed constituents were isolated and identified by a combination of high-field NMR spectroscopy and high resolution electrospray ionisation mass spectrometry. These include glucose, gentiobiose and kaempferol glycoside esters as well as sinapine (sinapoylcholine), sinapoylmalate and an unusual cyclic spermidine amide. One of the glucose esters (1,6-di-O-sinapoylglucose), two gentiobiose esters (1-O-caffeoylgentiobiose and 1,2,6′-tri-O-sinapoylgentiobiose) and two kaempferol conjugates [4′-(6-O-sinapoylglucoside)-3,7-di-O-glucoside and 3-O-sophoroside-7-O-(2-O-sinapoylglucoside)] seem to be new plant products. Serine carboxypeptidase-like (SCPL) acyltransferases catalyze the formation of sinapine and sinapoylmalate accepting 1-O-β-acetal esters (1-O-β-glucose esters) as acyl donors. To address the question whether the formation of other components of the complex pattern of the sinapate esters in B. napus seeds is catalyzed via 1-O-sinapoyl-β-glucose, we performed a seed-specific dsRNAi-based suppression of the sinapate glucosyltransferase gene (BnSGT1) expression. In seeds of BnSGT1-suppressing plants the amount of sinapoylglucose decreased below the HPLC detection limit resulting in turn in the disappearance or marked decrease of all the other sinapate esters, indicating that formation of the complex pattern of these esters in B. napus seeds is dependent on sinapoylglucose. This gives rise to the assumption that enzymes of an SCPL acyltransferase family catalyze the appropriate transfer reactions to synthesize the accumulating esters.
Publikation

Fester, T.; Hause, B.; Schmidt, D.; Halfmann, K.; Schmidt, J.; Wray, V.; Hause, G.; Strack, D.; Occurrence and Localization of Apocarotenoids in Arbuscular Mycorrhizal Plant Roots Plant Cell Physiol. 43, 256-265, (2002) DOI: 10.1093/pcp/pcf029

The core structure of the yellow pigment from arbuscular mycorrhizal (AM) maize roots contains the apocarotenoids mycorradicin (an acyclic C14 polyene) and blumenol C cellobioside (a C13 cyclohexenone diglucoside). The pigment seems to be a mixture of different esterification products of these apocarotenoids. It is insoluble in water and accumulates as hydrophobic droplets in the vacuoles of root cortical cells. Screening 58 species from 36 different plant families, we detected mycorradicin in mycorrhizal roots of all Liliopsida analyzed and of a considerable number of Rosopsida, but also species were found in which mycorradicin was undetectable in mycorrhizal roots. Kinetic experiments and microscopic analyses indicate that accumulation of the yellow pigment is correlated with the concomitant degradation of arbuscules and the extensive plastid network covering these haustorium-like fungal structures. The role of the apocarotenoids in mycorrhizal roots is still unknown. The potential C40 carotenoid precursors, however, are more likely to be of functional importance in the development and functioning of arbuscules.
Publikation

Kobayashi, N.; Schmidt, J.; Wray, V.; Schliemann, W.; Formation and occurrence of dopamine-derived betacyanins Phytochemistry 56, 429-436, (2001) DOI: 10.1016/S0031-9422(00)00383-6

In light of the fact that the main betaxanthin (miraxanthin V) and the major betacyanin (2-descarboxy-betanidin) in hairy root cultures of yellow beet (Beta vulgaris L.) are both dopamine-derived, the occurrence of similar structures for the minor betacyanins was also suggested. By HPLC comparison with the betacyanins obtained by dopamine administration to beet seedlings, enzymatic hydrolysis, LCMS and 1H NMR analyses, the minor betacyanins from hairy roots were identified as 2-descarboxy-betanin and its 6′-O-malonyl derivative. A short-term dopamine administration experiment with fodder beet seedlings revealed that the condensation step between 2-descarboxy-cyclo-Dopa and betalamic acid is the decisive reaction, followed by glucosylation and acylation. From these data a pathway for the biosynthesis of dopamine-derived betalains is proposed. Furthermore, the occurrence of these compounds in various cell and hairy root cultures as well as beet plants (Fodder and Garden Beet Group) is shown.
Publikation

Maier, W.; Schmidt, J.; Nimtz, M.; Wray, V.; Strack, D.; Secondary products in mycorrhizal roots of tobacco and tomato Phytochemistry 54, 473-479, (2000) DOI: 10.1016/S0031-9422(00)00047-9

Colonization of the roots of various tobacco species and cultivars (Nicotiana glauca Grah., N. longiflora Cav., N. rustica L., N. tabacum L., N. tabacum L. cv. Samsun NN, N. sanderae hort. Sander ex Wats.) as well as tomato plants (Lycopersicon esculentum L. cv. Moneymaker) by the arbuscular mycorrhizal fungus Glomus intraradices Schenck and Smith resulted in the accumulation of several glycosylated C13 cyclohexenone derivatives. Eight derivatives were isolated from the mycorrhizal roots by preparative high performance liquid chromatography (HPLC) and spectroscopically identified (MS and NMR) as mono-, di- and triglucosides of 6-(9-hydroxybutyl)-1,1,5-trimethyl-4-cyclohexen-3-one and monoglucosides of 6-(9-hydroxybutyl)-1,5-dimethyl-4-cyclohexen-3-one-1-carboxylic acid and 6-(9-hydroxybutyl)-1,1-dimethyl-4-cyclohexen-3-one-5-carboxylic acid. In contrast to the induced cyclohexenone derivatives, accumulation of the coumarins scopoletin and its glucoside (scopolin) in roots of N. glauca Grah. and N. tabacum L. cv. Samsun NN, was markedly suppressed.
Publikation

Weiss, M.; Schmidt, J.; Neumann, D.; Wray, V.; Christ, R.; Strack, D.; Phenylpropanoids in mycorrhizas of the Pinaceae Planta 208, 491-502, (1999) DOI: 10.1007/s004250050586

Tissue-specific accumulation of phenylpropanoids was studied in mycorrhizas of the conifers, silver fir (Abies alba Mill.), Norway spruce [Picea abies (L.) Karst.], white pine (Pinus strobus L.), Scots pine (Pinus silvestris L.), and Douglas fir [Pseudotsuga menziesii (Mirbel) Franco], using high-performance liquid chromatography and histochemical methods. The compounds identified were soluble flavanols (catechin and epicatechin), proanthocyanidins (mainly dimeric catechins and/or epicatechins), stilbene glucosides (astringin and isorhapontin), one dihydroflavonol glucoside (taxifolin 3′-O-glucopyranoside), and a hydroxycinnamate derivative (unknown ferulate conjugate). In addition, a cell wall-bound hydroxycinnamate (ferulate) and a hydroxybenzaldehyde (vanillin) were analysed. Colonisation of the root by the fungal symbiont correlated with the distribution pattern of the above phenylpropanoids in mycorrhizas suggesting that these compounds play an essential role in restricting fungal growth. The levels of flavanols and cell wall-bound ferulate within the cortex were high in the apical part and decreased to the proximal side of the mycorrhizas. In both Douglas fir and silver fir, which allowed separation of inner and outer parts of the cortical tissues, a characteristic transversal distribution of these compounds was found: high levels in the inner non-colonised part of the cortex and low levels in the outer part where the Hartig net is formed. Restriction of fungal growth to the outer cortex may also be achieved by characteristic cell wall thickening of the inner cortex which exhibited flavanolic wall infusions in Douglas fir mycorrhizas. Long and short roots of conifers from natural stands showed similar distribution patterns of phenylpropanoids and cell wall thickening compared to the respective mycorrhizas. These results are discussed with respect to co-evolutionary adaptation of both symbiotic partners regarding root structure (anatomy) and root chemistry.
IPB Mainnav Search