zur Suche springenzur Navigation springenzum Inhalt springen

Sortieren nach: Erscheinungsjahr Typ der Publikation

Zeige Ergebnisse 1 bis 10 von 325.

Publikation

Cherevatskaya, M.; Cherepanov, I.; Kalganova, N.; Erofeeva, N.; Romanovskaya, E.; Frolov, A.; Bilova, T.; Moiseev, S.; Wessjohann, L. A.; Sydnone imines as a new class of promising plant growth and stress tolerance modulators—A first experimental structure–activity overview Stresses 4, 133-154, (2024) DOI: 10.3390/stresses4010008

Due to the oncoming climate changes, various environmental stresses (drought, salinity, heavy-metals, low or high temperatures, etc.) might dramatically affect crop yields and the quality of produced foods. Therefore, to meet the growing food demand of the human population, improvement of stress tolerance of the currently cultured crops is required. The knowledge of the molecular underlying mechanisms provides a versatile instrument to correct plant metabolism via chemical tools and to thereby increase their adaptive potential. This will preserve crop productivity and quality under abiotic stress conditions. Endogenously produced nitric oxide (NO) is one of the key signaling factors activating stress tolerance mechanisms in plants. Thus, the application of synthetic NO donors as stress-protective phytoeffectors might support maintaining plant growth and productivity under stressful conditions. Sydnone imines (sydnonimines) are a class of clinically established mesoionic heterocyclic NO donors which represent a promising candidate group for such phytoeffectors. Therefore, here, we provide an overview of the current progress in the application of sydnone imines as exogenous NO donors in plants, with a special emphasis on their potential as herbicides as well as herbicide antidotes, growth stimulants and stress protectors triggering plant tolerance mechanisms. We specifically address the structure–activity relationships in the context of the growth modulating activity of sydnone imines. Growth stimulating or antidote effects are typical for 4-α-hydroxybenzyl derivatives of sydnone imines containing an alkyl substituent in position N-3. The nature of the substituent of the N-6 atom has a significant influence on the activity profile and the intensity of the effect. Nevertheless, further investigations are necessary to establish reliable structure–activity relationships (SAR). Consequently, sydnone imines might be considered promising phytoeffector candidates, which are expected to exert either protective effects on plants growing under unfavorable conditions, or herbicidal ones, depending on the exact structure.
Publikation

Méndez, Y.; Vasco, A. V.; Ebensen, T.; Schulze, K.; Yousefi, M.; Davari, M. D.; Wessjohann, L. A.; Guzmán, C. A.; Rivera, D. G.; Westermann, B.; Diversification of a novel α‐galactosyl ceramide hotspot boosts the adjuvant properties in parenteral and mucosal vaccines Angew. Chem. Int. Ed. 63, e202310983, (2024) DOI: 10.1002/anie.202310983

The development of potent adjuvants is an important step for improving the performance of subunit vaccines. CD1d agonists, such as the prototypical α‐galactosyl ceramide (α‐GalCer), are of special interest due to their ability to activate iNKT cells and trigger rapid dendritic cell maturation and B‐cell activation. Herein, we introduce a novel derivatization hotspot at the α‐GalCer skeleton, namely the N‐substituent at the amide bond. The multicomponent diversification of this previously unexplored glycolipid chemotype space permitted the introduction of a variety of extra functionalities that can either potentiate the adjuvant properties or serve as handles for further conjugation to antigens toward the development of self‐adjuvanting vaccines. This strategy led to the discovery of compounds eliciting enhanced antigen‐specific T cell stimulation and a higher antibody response when delivered by either the parenteral or the mucosal route, as compared to a known potent CD1d agonist. Notably, various functionalized α‐GalCer analogues showed a more potent adjuvant effect after intranasal immunization than a PEGylated α‐GalCer analogue previously optimized for this purpose. Ultimately, this work could open multiple avenues of opportunity for the use of mucosal vaccines against microbial infections.
Publikation

Herrera-Rocha, F.; León-Inga, A. M.; Aguirre Mejía, J. L.; Rodríguez-López, C. M.; Chica, M. J.; Wessjohann, L. A.; González Barrios, A. F.; Cala, M. P.; Fernández-Niño, M.; Bioactive and flavor compounds in cocoa liquor and their traceability over the major steps of cocoa post-harvesting processes Food Chem. 435, 137529, (2024) DOI: 10.1016/j.foodchem.2023.137529

The production of fine-flavor cocoa represents a promising avenue to enhance socioeconomic development in Colombia and Latin America. Premium chocolate is obtained through a post-harvesting process, which relies on semi-standardized techniques. The change in the metabolic profile during cocoa processing considerably impacts flavor and nutraceutical properties of the final product. Understanding this impact considering both volatiles and non-volatile compounds is crucial for process and product re-engineering of cocoa post-harvesting. Consequently, this work studied the metabolic composition of cocoa liquor by untargeted metabolomics and lipidomics. This approach offered a comprehensive view of cocoa biochemistry, considering compounds associated with bioactivity and flavor in cocoa liquor. Their variations were traced back over the cocoa processing (i.e., drying, and roasting), highlighting their impact on flavor development and the nutraceutical properties. These results represent the basis for future studies aimed to re-engineer cocoa post-harvesting considering the variation of key flavor and bioactive compounds over processing.
Publikationen in Druck

Noleto‐Dias, C.; Farag, M. A.; Porzel, A.; Tavares, J. F.; Wessjohann, L. A.; A multiplex approach of MS, 1D‐, and 2D‐NMR metabolomics in plant ontogeny: A case study on Clusia minor L. organs (leaf, flower, fruit, and seed) Phytochem. Anal. 1-24, (2023) DOI: 10.1002/pca.3300

Introduction: The genus Clusia L. is mostly recognised for the production of prenylated benzophenones and tocotrienol derivatives.Objectives: The objective of this study was to map metabolome variation within Clusia minor organs at different developmental stages.Material and Methods: In total 15 organs/stages (leaf, flower, fruit, and seed) were analysed by UPLC‐MS and 1H‐ and heteronuclear multiple‐bond correlation (HMBC)‐NMR‐based metabolomics.Results: This work led to the assignment of 46 metabolites, belonging to organic acids(1), sugars(2) phenolic acids(1), flavonoids(3) prenylated xanthones(1) benzophenones(4) and tocotrienols(2). Multivariate data analyses explained the variability and classification of samples, highlighting chemical markers that discriminate each organ/stage. Leaves were found to be rich in 5‐hydroxy‐8‐methyltocotrienol (8.5 μg/mg f.w.), while flowers were abundant in the polyprenylated benzophenone nemorosone with maximum level detected in the fully mature flower bud (43 μg/mg f.w.). Nemorosone and 5‐hydroxy tocotrienoloic acid were isolated from FL6 for full structural characterisation. This is the first report of the NMR assignments of 5‐hydroxy tocotrienoloic acid, and its maximum level was detected in the mature fruit at 50 μg/mg f.w. Seeds as typical storage organ were rich in sugars and omega‐6 fatty acids.Conclusion: To the best of our knowledge, this is the first report on a comparative 1D‐/2D‐NMR approach to assess compositional differences in ontogeny studies compared with LC‐MS exemplified by Clusia organs. Results derived from this study provide better understanding of the stages at which maximal production of natural compounds occur and elucidate in which developmental stages the enzymes responsible for the production of such metabolites are preferentially expressed.
Publikation

Otify, A. M.; Ibrahim, R. M.; Abib, B.; Laub, A.; Wessjohann, L. A.; Jiang, Y.; Farag, M. A.; Unveiling metabolome heterogeneity and new chemicals in 7 tomato varieties via multiplex approach of UHPLC-MS/MS, GC–MS, and UV–Vis in relation to antioxidant effects as analyzed using molecular networking and chemometrics Food Chem. 417, 135866, (2023) DOI: 10.1016/j.foodchem.2023.135866

Tomatoes show diverse phytochemical attributes that contribute to their nutritive and health values. This study comprehensively dissects primary and secondary metabolite profiles of seven tomato varieties. UHPLC-qTOF-MS assisted molecular networking was used to monitor 206 metabolites, 30 of which were first-time to be reported. Flavonoids, as valuable antioxidants, were enriched in light-colored tomatoes (golden sweet, sun gold, and yellow plum) versus high tomatoside A, an antihyperglycemic saponin, in cherry bomb and red plum varieties. UV–Vis analysis revealed similar results with a strong absorbance corresponding to rich phenolic content in light varieties. GC–MS unveiled monosaccharides as the main contributors to samples’ segregation, found abundant in San Marzano tomato accounting for its sweet flavor. Fruits also demonstrated potential antioxidant activities in correlation to their flavonoids and phospholipids. This work provides a complete map of tomatoes’ metabolome heterogeneity for future breeding programs and a comparative approach utilizing different metabolomic platforms for tomato analysis.
Publikation

Nugraha, A. S.; Firli, L. N.; Rani, D. M.; Hidayatiningsih, A.; Lestari, N. D.; Wongso, H.; Tarman, K.; Rahaweman, A. C.; Manurung, J.; Ariantari, N. P.; Papu, A.; Putra, M. Y.; Pratama, A. N. W.; Wessjohann, L. A.; Keller, P. A.; Indonesian marine and its medicinal contribution Natural Products and Bioprospecting 13, 38, (2023) DOI: 10.1007/s13659-023-00403-1

The archipelagic country of Indonesia is populated by the densest marine biodiversity in the world which has created strong global interest and is valued by both Indigenous and European settlements for different purposes. Nearly 1000 chemicals have been extracted and identified. In this review, a systematic data curation was employed to collate bioprospecting related manuscripts providing a comprehensive directory based on publications from 1988 to 2022. Findings with significant pharmacological activities are further discussed through a scoping data collection. This review discusses macroorganisms (Sponges, Ascidian, Gorgonians, Algae, Mangrove) and microorganism (Bacteria and Fungi) and highlights significant discoveries, including a potent microtubule stabilizer laulimalide from Hyattella sp., a prospective doxorubicin complement papuamine alkaloid from Neopetrosia cf exigua, potent antiplasmodial manzamine A from Acanthostrongylophora ingens, the highly potent anti trypanosomal manadoperoxide B from Plakortis cfr. Simplex, mRNA translation disrupter hippuristanol from Briareum sp, and the anti-HIV-1 (+)-8-hydroxymanzamine A isolated from Acanthostrongylophora sp. Further, some potent antibacterial extracts were also found from a limited biomass of bacteria cultures. Although there are currently no examples of commercial drugs from the Indonesian marine environment, this review shows the molecular diversity present and with the known understudied biodiversity, reveals great promise for future studies and outcomes.
Publikation

Noleto-Dias, C.; Picoli, E. A. T.; Porzel, A.; Wessjohann, L. A.; Tavares, J. F.; Farag, M. A.; Metabolomics characterizes early metabolic changes and markers of tolerant Eucalyptus ssp. clones against drought stress Phytochemistry 212, 113715, (2023) DOI: 10.1016/j.phytochem.2023.113715

L’Hér. (Myrtaceae) is one of the economically most important and widely cultivated trees for wood crop purposes worldwide. Climatic changes together with the constant need to expand plantations to areas that do not always provide optimal conditions for plant growth highlight the need to assess the impact of abiotic stresses on eucalypt trees. We aimed to unveil the drought effect on the leaf metabolome of commercial clones with differential phenotypic response to this stress. For this, seedlings of 13 clones were grown at well-watered (WW) and water-deficit (WD) conditions and their leaf extracts were subjected to comparative analysis using ultra-high performance liquid chromatography coupled to mass spectrometry (UPLC-MS) and nuclear magnetic resonance spectroscopy (NMR). UPLC-MS and NMR analyses led to the annotation of over 100 molecular features of classes such as cyclitols, phenolics, flavonoids, formylated phloroglucinol compounds (FPCs) and fatty acids. Multivariate data analysis was employed for specimens\' classifications and markers identification from both platforms. The results obtained in this work allowed us to classify clones differing in drought tolerance. Classification models were validated using an extra subset of samples. Tolerant plants exposed to water deficit accumulated arginine, gallic acid derivatives, caffeic acid and tannins at higher levels. In contrast, stressed drought-sensitive clones were characterised by a significant reduction in glucose, inositol and shikimic acid levels. These changes in contrasting drought response eucalypt pave ways for differential outcomes of tolerant and susceptible phenotypes. Under optimal growth conditions, all clones were rich in FPCs. These results can be used for early screening of tolerant clones and to improve our understanding of the role of these biomarkers in Eucalyptus tolerance to drought stress.
Publikation

Kappen, J.; Manurung, J.; Fuchs, T.; Vemulapalli, S. P. B.; Schmitz, L. M.; Frolov, A.; Agusta, A.; Muellner-Riehl, A. N.; Griesinger, C.; Franke, K.; Wessjohann, L. A.; Challenging structure elucidation of lumnitzeralactone, an ellagic acid derivative from the Mangrove Lumnitzera racemosa Mar. Drugs 21, 242, (2023) DOI: 10.3390/md21040242

The previously undescribed natural product lumnitzeralactone (1), which represents a derivative of ellagic acid, was isolated from the anti-bacterial extract of the Indonesian mangrove species Lumnitzera racemosa Willd. The structure of lumnitzeralactone (1), a proton-deficient and highly challenging condensed aromatic ring system, was unambiguously elucidated by extensive spectroscopic analyses involving high-resolution mass spectrometry (HRMS), 1D 1H and 13C nuclear magnetic resonance spectroscopy (NMR), and 2D NMR (including 1,1-ADEQUATE and 1,n-ADEQUATE). Determination of the structure was supported by computer-assisted structure elucidation (CASE system applying ACD-SE), density functional theory (DFT) calculations, and a two-step chemical synthesis. Possible biosynthetic pathways involving mangrove-associated fungi have been suggested.
Publikation

Fobofou, S. A. T.; Franke, K.; Brandt, W.; Manzin, A.; Madeddu, S.; Serreli, G.; Sanna, G.; Wessjohann, L. A.; Bichromonol, a dimeric coumarin with anti-HIV activity from the stem bark of Hypericum roeperianum Nat. Prod. Res. 37, 1947-1953, (2023) DOI: 10.1080/14786419.2022.2110094

Infectious diseases caused by viruses like HIV and SARS-COV-2 (COVID-19) pose serious public health threats. In search for new antiviral small molecules from chemically underexplored Hypericum species, a previously undescribed atropisomeric C8-C8’ linked dimeric coumarin named bichromonol (1) was isolated from the stem bark of Hypericum roeperianum. The structure was elucidated by MS data and NMR spectroscopy. The absolute configuration at the biaryl axis was determined by comparing the experimental ECD spectrum with those calculated for the respective atropisomers. Bichromonol was tested in cell-based assays for cytotoxicity against MT-4 (CC50 ¼ 54 mM) cells and anti-HIV activity in infected MT-4 cells. It exhibits significant activity at EC50 ¼ 6.6–12.0 mM against HIV-1 wild type and its clinically relevant mutant strains. Especially, against the resistant variants A17 and EFVR, bichromonol is more effective than the commercial drug nevirapine and might thus have potential to serve as a new anti-HIV lead.
Publikation

Farag, M. A.; Baky, M. H.; Morgan, I.; Khalifa, M. R.; Rennert, R.; Mohamed, O. G.; El-Sayed, M. M.; Porzel, A.; Wessjohann, L. A.; Ramadan, N. S.; Comparison of Balanites aegyptiaca parts: metabolome providing insights into plant health benefits and valorization purposes as analyzed using multiplex GC-MS, LC-MS, NMR-based metabolomics, and molecular networking RSC Adv. 13, 21471-21493, (2023) DOI: 10.1039/d3ra03141a

Balanites aegyptiaca (L.) Delile (Zygophyllaceae), also known as the desert date, is an edible fruit-producing tree popular for its nutritional and several health benefits. In this study, multi-targeted comparative metabolic profiling and fingerprinting approaches were conducted for the assessment of the nutrient primary and secondary metabolite heterogeneity in different parts, such as leaves, stems, seeds, unripe, and ripe fruits of B. aegyptiaca using nuclear magnetic resonance (NMR), ultra-performance liquid chromatography (UPLC-MS), and gas chromatography mass-spectrometry (GC-MS) based metabolomics coupled to multivariate analyses and in relation to its cytotoxic activities. NMR-based metabolomic study identified and quantified 15 major primary and secondary metabolites belonging to alkaloids, saponins, flavonoids, sugars, and amino and fatty acids. Principal component analysis (PCA) of the NMR dataset revealed α-glucose, sucrose, and isorhamnetin as markers for fruit and stem and unsaturated fatty acids for predominated seeds. Orthogonal projections to latent structure discriminant analysis (OPLS-DA) revealed trigonelline as a major distinctive metabolite in the immature fruit and isorhamnetin as a major distinct marker in the mature fruit. UPLC-MS/MS analysis using feature-based molecular networks revealed diverse chemical classes viz. steroidal saponins, N-containing metabolites, phenolics, fatty acids, and lipids as the constitutive metabolome in Balanites. Gas chromatography-mass spectroscopy (GC-MS) profiling of primary metabolites led to the detection of 135 peaks belonging to sugars, fatty acids/esters, amino acids, nitrogenous, and organic acids. Monosaccharides were detected at much higher levels in ripe fruit and disaccharides in predominate unripe fruits, whereas B. aegyptiaca vegetative parts (leaves and stem) were rich in amino acids and fatty acids. The antidiabetic compounds, viz, nicotinic acid, and trigonelline, were detected in all parts especially unripe fruit in addition to the sugar alcohol D-pinitol for the first time providing novel evidence for B. aegyptiaca use in diabetes. In vitro cytotoxic activity revealed the potential efficacy of immature fruit and seeds as cytotoxic agents against human prostate cancer (PC3) and human colorectal cancer (HCT-116) cell lines. Collectively, such detailed profiling of parts provides novel evidence for B. aegyptiaca medicinal uses.
IPB Mainnav Search